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Summary. We consider clinical studies with a sample size re-estimation based on the

unblinded variance estimation at some interim point of the study. Since the sample

size is determined in that flexible way, the usual variance estimator at the end of the

trial is biased. We derive sharp bounds for this bias. These bounds have a quite simple

form and can help for the decision if this bias is negligible for the actual study or if a

correction should be done. An exact formula for the bias is also provided. We discuss

possibilities to get rid of this bias or at least to reduce the bias substantially. For this

purpose, we propose a certain additive correction of the bias. We see in an example

that the significance level of the test can be controlled when this additive correction

is used.

Key words: Adaptive design; Bias of variance estimation; Bounds for bias; Clinical

studies; Interim sample size re-estimation; Variance estimation.
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1 Introduction

Since it is important that clinical studies are adequately powered, the sample size of

a study is usually determined with some sample size formula before the study starts.

However, sample size formulas depend on parameters, such as assumed treatment

difference and variance, and one has to have information on these parameters before

study start. But often is the information on these parameters not very good before

the study. Hence, flexible designs where the design can be adapted using information

of the first part of the study became recently very popular.

That adaptive designs have great advantages in certain situations is in the mean-

time widely accepted both by the pharmaceutical industry and the regulatory author-

ities. However, from a statistical perspective, an investigation of such designs is not at

all trivial. After a careful inspection it becomes often unclear what happens to proper-

ties of estimators or to the type I error and power of tests if a certain design-adaptation

rule is used during the study.

Let us consider a quite simple situation: a parallel design for two treatment groups

with normally distributed outcomes and equal variances for both groups. Let us as-

sume that we have only uncertain or no information about the true variance. Therefore

we estimate after a certain number n1 of patients in each group the variance with the

usual two-sample variance estimator (which requires that we know to which treatment

the patients were assigned to, that is we unblind the treatment codes from the first

2n1 patients). With this estimation, we calculate a sample size for the whole study

which should provide a certain power based on the information we got from the first

2n1 patients. We call the part of the study with the first 2n1 patients first stage of the

study. If the variance estimator has a low value a small study should be sufficient to
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achieve a certain power, if the variance estimator has a high value we need certainly

a larger study. Then, at the end of the study we estimate the variance with the usual

variance estimator S2 for two groups. A nice property of this variance estimator S2

is common to us: in fixed designs without sample size adaptation it is an unbiased

estimator of the variance. But the situation changes for the here described adaptive

design with sample size re-estimation: this estimator is then negatively biased, it un-

derestimates in average the true variance! This fact is well known in the literature.

Unfortunately, it is very little known about the amount of bias. Some calculations

were done in Wittes et. al. (1999), but their bound for the bias is not very sharp.

According to Wittes et. al. (1999), we call this usual variance estimator S2 the naive

variance estimator when used in uncorrected form in the here described sample size

re-estimation procedure.

For some studies, for example studies of more explorative nature in the early phase

of drug development, it may be no problem to accept a biased estimation as long as

the bias is not too big. We present in Section 4 a sharp bound for this bias, derived

by algebraic calculations. The bound has surprisingly a very simple form. With this

bound, we get help to judge if we can live with this bias or not. We develop also an

exact formula for the bias. However the shape of the exact bias is not that nice as the

bound developed before.

In some studies, for example studies in phase III for registration purpose of a drug,

it may be important to adjust for any bias induced by the adaptation in the design. We

discuss possibilities to get rid of this bias or at least to reduce the bias substantially in

Section 5. For this purpose, we propose a new method, the so-called variance estimator

with additive correction of the bias.

Why is the variance estimator S2 so important for us? One thing is that in the
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t-test statistic usually used in this model for the treatment comparison, it is divided

by the square root of the variance estimator. Due to the negative bias of S2 in the

above described adaptive design, the type I error increases over the nominal size α if

no adjustment of the critical value is done. An early paper dealing with this adaptive

test problem is Stein (1945). Stein uses the unbiased S2
1 , the variance estimator of the

first stage, in the final test statistic instead of S2. With this choice, his test strongly

controls both the significance level α and the power. Proschan and Wittes (2000)

describe an improvement of Steins procedure.

Even if we do not have the test in mind, the variance estimator is important itself:

Clinical projects for drug development consist usually of a lot of single studies. Hence,

it is desirable to have a good variance estimator which can be used as prior information

for sample size calculation for comparable studies in the future. In this paper, we focus

on the variance estimator itself. However, we see in Section 6 for an example that the

significance level of the final test can be controlled if we use the variance estimator

with additive correction instead of the naive variance estimator in the test statistic.

In the discussion we give some recommendations. Technical proofs are postponed to

the appendix.

In the next section, we discus differences between unblinded and blinded sample

size re-estimation before we describe the model more formally in Section 3.

2 Unblinded or blinded sample size re-estimation

In this paper, we focus on sample size re-estimation based on the usual two-sample

variance estimator S2
1 after the first stage, i.e.

S2
1 =

1

2n1 − 2

2∑

i=1

n1∑

j=1

(

Yij − Ȳ
(1)
i·

)2

,
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where Yij is the outcome of patient number j in treatment group i, i ∈ {1, 2} and Ȳ
(1)
i·

is the mean of the n1 observations for treatment i in the first stage. For this estimator

it is necessary to know the treatments to which the patients of the first stage were

assigned. This means that it is necessary for blinded studies to unblind them.

An alternative to the unblinded sample size re-estimation procedure considered in

this paper is to use blinded sample size re-estimation procedures. Among several pos-

sibilities, the investigation of Friede and Kieser (2002) suggests that the best blinded

approach is the sample size re-estimation with the one-sample variance proposed by

Gould and Shih (1992) or with an adjusted version of the one-sample variance pro-

posed by Zucker et. al. (1999). Using numerical calculation, Kieser and Friede (2003)

showed that the type I error is approximately controlled with these procedures. Zucker

et. al. (1999) report power comparisons with some unblinded procedures.

The use of the one-sample variance has the disadvantage that it is increasing with

an increasing treatment difference. This implies unnecessary big sample sizes if the

true treatment difference is bigger than the pre-specified difference in the sample size

formula. However, Friede and Kieser (2001) argue that the inflation in sample size

for the one-sample variance procedure is not very big as long as the true treatment

difference is only slightly larger than the pre-specified difference.

On the other hand, with an unblinded procedure there may be a risk that in-

formation about the observed treatment difference at the interim analysis reaches the

investigators. Knowing the observed difference, the investigators could be influenced in

their choice of future patients or in the way of taking care of their patients. Therefore,

one should try to minimize this risk. For example, only an independent statistician

should be unblinded to perform the interim analysis. Further, since the within treat-

ment variability can be calculated with the within group variability and the total
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variability, it should be avoided if possible that somebody has access to data which

allows the computation of the total variance.

The decision for a blinded or an unblinded procedure should be done on a case-to-

case basis. In the following example, we prefer strongly an unblinded procedure.

Example 2.1 Let us assume that we have a study with three treatment arms: a new

treatment developed by the sponsor company of the study, an active comparator and

placebo. The primary objective is to show superiority of the new treatment over the

active comparator using a two-sample t-test. The additional placebo arm not needed

for primary purpose is useful to judge the sensitivity of the study to identify treatment

differences. In historical studies it was shown that the active comparator is better than

placebo. If the actual study is not even able to re-prove this, the possible acceptance

of the primary null hypothesis could question the study itself and not necessarily the

performance of the new treatment.

In this example, the final two-sample t-test uses no information from the placebo

arm, since the variance in this arm might differ from the variance in the other arms.

We want also the interim variance estimation not to be influenced from the placebo arm

to get a proper sample size re-estimation. Hence, it is necessary that an independent

statistician is unblinded to identify placebo patients. Further, due to the placebo arm,

it is not possible to calculate the primary within treatment variability with the interim

estimation and the total variability. In such a situation, sample size re-estimation

with two-sample variance estimation (unblinded) is preferable compared to one-sample

variance estimation. This design has to be analysed as two-sample problem and hence

the theory of this paper applies directly to this example.
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3 Model and notation

We consider in this paper a parallel two-group trial with normally distributed out-

comes, i.e. Yij ∼ N(µi, σ
2). The mean values µ1 and µ2 and the variance σ2 are

unknown. The main aim of the study is the test of H0 : µ1 = µ2 against the alter-

native H1 : µ1 6= µ2 with a test of size α and, for |µ1 − µ2| = ∆, power 1 − β. The

values α (usually 0.05), β (usually 0.1 or 0.2) and ∆ (expected treatment difference

or minimal clinical relevant difference) are assumed to be specified in advance.

We observe n1 ≥ 3 patients per treatment. Then, the variance is estimated by

the usual two-sample variance estimator S2
1 . This estimator is used to compute the

final sample size of n patients per treatment and additional n2 = n − n1 patients per

treatment will be observed. A popular sample size formula is the formula for known

variance, replacing the true variance with the estimator S2
1 , namely

n = vS2
1

with

v =
2

∆2

{
Φ−1(1 − α/2) + Φ−1(1 − β)

}2
. (3.1)

We modify here the formula n = vS2
1 slightly to n = vS2

1 +1 since the later calculations

show that it is appropriate to add 1. However, we ignore here the fact that we have

to round in practice n to an integer value.

Generally, if the above calculation yield to a n lower than n1, we would stop the

study immediately but analyze all patients in the study. Moreover, it is a quite common

situation that the treatment time in the study is some weeks or months. Hence, more

than n1 patients per treatment may be already in our study when the results of n1

are available. Further, performing the interim sample size re-estimation may require

some days or weeks, which also increases the number of patients already in the study.
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The results of these patients should be included in the final analysis independent of

the result of the sample size formula. To include this phenomenon in our sample size

formula, we generalize the formula to

n = max(v · S2
1 + 1, n1 + n2 min) (3.2)

where n2 min ≥ 0 is arbitrary. In the sequel, we consider the sample size formula (3.2)

where n1, n2min, v are specified in advance. The factor v may be calculated by (3.1),

but our considerations are not restricted to this formula for v.

Note here that the so called restricted sample size re-estimation investigated by

Wittes and Brittain (1990) can be seen as special case of (3.2). They recommend to

calculate an initial sample size based on a vague guess of the variance, σ2
0 , say, and

then in the interim re-estimation only to update the sample size upwards if necessary.

In our notation, they use n2min = vσ2
0 − n1.

At the end of the trial (after the observation of n patients for every treatment), we

compute the naive estimator for the variance in the whole study

S2 =
1

2n − 2

2∑

i=1

n∑

j=1

(Yij − Ȳi·)
2

where Ȳi· is the mean of all n observations for treatment i. In this paper, we investigate

properties of S2, especially the bias of this estimator.

4 Bounds and exact formula for the bias of the

variance estimator

The fact that the naive variance estimator S2 is negatively biased can be explained

in the following way: If we underestimate the true variance after n1 patients in each
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group (small S2
1), then n2 will be small and hence it will be hard to correct the

underestimated variance within the first 2n1 patients by the last 2n2 patients. If we

overestimate the true variance after n1 patients in each group (large S2
1), then n2 will

be large and hence it will be easier to correct the overestimated variance within the

first 2n1 patients by the last 2n2 patients. Bounds for the bias of S2 are provided in

the following theorem.

Theorem 4.1 The bias of the naive variance estimator has the following bounds:

−n1 − 1

n1 − 2
· 1

v
≤ ES2 − σ2 ≤ 0.

The proof is contained in the appendix. Note that the proof of Theorem 4.1 shows

that we would have exactly ES2−σ2 = −n1−1
n1−2

· 1
v
, if we would use n = vS2

1 +1 instead

of (3.2), n = max(v · S2
1 + 1, n1 + n2 min). Hence, we expect that this lower bound will

be nearly attained if the probability that vS2
1 + 1 ≥ n1 + n2min is high. This is the

case for large σ2.

Example 4.2 Let us assume that we plan a study where a minimal clinical relevant

difference of ∆ = 1 between the two treatments has to be detected with a power of

1 − β = 0.9. The two-sided test has to have a significance level of α = 0.05. For the

variance, we have only a very vague guess: it may be about 16 (standard deviation=4).

A fixed sample size trial would be planned with the sample size of about v · 16 with v =

2
∆2 {Φ−1(1 − α/2) + Φ−1(1 − β)}2 ≈ 21.016. Hence, about 336 patients per treatment

would be necessary. Since the variance guess was very vague, we choose an adaptive

design with interim sample size re-estimation and update the sample size after n1 = 168

patients per treatment. For the bias of the naive variance estimator, we have the lower

bound −(n1 − 1)/{(n1 − 2)v} ≈ −0.0479. If the true variance is in reality not very
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much lower than our vague guess of 16, we may conclude that the bias of the naive

variance estimator is negligible in this situation.

We state in the following theorem a formula for the exact bias.

Theorem 4.3 Let d = (2n1 − 2)(n1 + n2min − 1)/(vσ2) and Fν be the distribution

function of the chi-square distribution with ν degrees of freedom. Then the bias ES2 −

σ2 of the naive variance estimator is

2(n1 − 1)2

vd
{F2n1

(d) − F2n1−2(d)}+n1 − 1

v
{1 − F2n1−2(d)}− (n1 − 1)2

v(n1 − 2)
{1 − F2n1−4(d)} .

The proof can be found in the appendix.

Wittes et. al. (1999) have computed the following bounds for the bias of S2:

−σ2/
√

n1 − 1 ≤ ES2 − σ2 ≤ 0.

Their lower bound applies for arbitrary sample size formulas with n ≥ n1, not only for

(3.2). However, it is usually a very rough bound, which can be seen in the following

example.

Example 4.4 Let n1 = 20, n2min = 10 and v = 4.3421. The value of v is the result of

formula (3.1) with α = 0.05, 1 − β = 0.9 and ∆ = 2.2. Figure 1 shows the bias of S2,

the bounds of Theorem 4.1 and the lower bound of Wittes et. al. (1999) as a function

of the true σ2.

5 An ’almost’ unbiased variance estimator

The proof of Theorem 4.1 shows that the lower bound −n1−1
n1−2

· 1
v

would be the exact

bias, if P (v ·S2
1 +1 > n1 +n2min) = 1. On the other hand it is clear that we would have
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no bias if P (v ·S2
1 + 1 ≤ n1 + n2 min) = 1. Even if this is only a theoretic consideration

since these probabilities will be never exact 1, it suggests the following correction of

the variance estimator:

S2
ac =







S2 + n1−1
n1−2

· 1
v
, if n > n1 + n2min,

S2, if n = n1 + n2min.

We call this estimator ’Variance estimator with additive correction’. Using Theorem

4.3, we are able to calculate the bias of S2 and S2
ac for given values of n1, n2min, σ

2 and

v.

Example 5.1 Let us consider again n1 = 20, n2min = 10 and v = 4.3421. Figure 2

shows the bias of S2 and S2
ac

as a function of the true σ2.

The figure shows that we can reduce the bias substantially with the additive correc-

tion. Furthermore, the remaining bias is a bias in the other direction. An overestima-

tion of the variance is often preferable to an underestimation since it results usually

in a more conservative interpretation of study results.

Of course, the question of existence or amount of bias is not the only criterion if

we look at properties of estimators. Therefore, we investigate the variability of the

estimators and compare this variability with other estimators. More precisely, we

compare the standard deviation of different variance estimators by simulations. We

compare the naive variance estimator S2 and the variance estimator with additive

correction S2
ac with the variance estimator proposed by Proschan and Wittes (2000).

This estimator can be defined as weighted sum of the variance estimator of the variance

estimator in the first stage S2
1 and the ’rest’ S2

∗
with

S2
∗

=
n − 1

n − n1

S2 − n1 − 1

n − n1

S2
1



Variance estimation in clinical studies with interim sample size re-estimation 12

(S2
∗

is the ’rest’ since S2 can be decomposed into (n1−1)/(n−1)S2
1 +(n−n1)/(n−1)S2

∗
).

The variance estimator of Proschan and Wittes is then

S2
PW =

n1 − 1

n1 + n2min − 1
S2

1 +
n2min

n1 + n2 min − 1
S2
∗
.

This estimator is an unbiased estimator for the variance and it is the best estimator

in the class of estimators λS2
1 + (1− λ)S2

∗
with λ ∈ [0, 1] fixed. It is worth mentioning

that S2
PW = S2

1 if n2min = 0.

We include in our simulations of the standard deviation two other unbiased variance

estimators: the variance estimator of the first stage S2
1 (which was used by Stein (1945)

in the test statistic at the end of the trial) and the variance estimator of the second

stage S2
2 . Note that S2

2 is well defined if n2 ≥ 2 which is fulfilled if n2min ≥ 2.

Example 5.2 Let us consider again n1 = 20, n2min = 10 and v = 4.3421. We have

done 20 000 simulations for each of σ2 ∈ {2, 4, 6, . . . , 24} to compute the standard

deviation of the different variance estimators.

We see in Figure 3 that the naive variance estimator S2 has the lowest standard

deviation. The additive correction in the estimator S2
ac

has almost no influence on

the standard deviation, it is only slightly higher than the standard deviation of S2 in a

small region of σ2 values. The estimator of Proschan and Wittes has a higher standard

deviation than S2 and S2
ac

, especially for high σ2 when n2 usually is much bigger than

n2 min. The variance estimator which uses only the information of the first stage, S2
1 ,

has a much higher standard deviation than S2, S2
ac

and S2
PW

for all σ2 values. The

variance estimator S2
2 has a relatively high standard deviation for small values of σ2.

For large values of σ2 it becomes better than S2
PW

but remains worse than S2 and S2
ac

due to the fact that the first stage information is not used.
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6 The test with the corrected variance estimator

Usually, at the end of the study a test is performed for the null hypothesis that the

two treatments have equal effect H0 : µ1 = µ2 against the alternative that the effect

is different H1 : µ1 6= µ2. This is in fixed designs usually done with the t-test

t =
Ȳ1· − Ȳ2·
√

2S2/n
, reject H0 if and only if |t| > t2n−2,1−α/2, (6.1)

where tν,γ is the γ-quantile of the t-distribution with ν degrees of freedom. In the

adaptive design with interim sample size re-estimation considered in this paper, the

naive variance estimator S2 is negatively biased and therefore the type I error of the

’naive’ t-test (6.1) increases over the nominal size α. This can be corrected using an

adjusted critical value t2n−2,1−αadj/2 instead of t2n−2,1−α/2, see Kieser and Friede (2000).

Another possibility to adjust for the influence of the interim sample size re-estimation

is to use the variance estimator with additive correction S2
ac instead of S2 in the t-test

statistic:

tac =
Ȳ1· − Ȳ2·
√

2S2
ac/n

, reject H0 if and only if |tac| > t2n−2,1−α/2.

We see in the following example by simulations, that the additive correction for the

bias in the variance estimator is enough to bring the type I error of the test back to

the nominal level α. Even if an investigation of the test statistic is not the main scope

of this paper, the example underlines the usefulness of the variance estimator with

additive correction.

Example 6.1 Let us consider again n1 = 20, n2min = 10 and v = 4.3421 (appropriate

for α = 0.05, 1 − β = 0.9, ∆ = 2.2). We have done 4 000 000 simulations for each

of σ2 ∈ {2, 4, 6, . . . , 24} to compute the type I error of the t-test and the tac-test. The
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type I errors are shown in Figure 4. The t-test has a maximal type I error of 0.0526

for σ2 = 10. Using the tac-test, i.e. using simply the additive correction in the variance

estimator of the t-test, the maximal type I error is reduced to (or at least very near

to) the nominal level of α. Hence for this example, the use of the tac-test instead of

the t-test should be sufficient to fulfill the requirement of the ICH guideline E9 (1998)

for clinical studies: “... the consequences, if any, for the type I error ... should be

explained”. Moreover, the type I error of the tac-test as function of the true variance

is a quite flat curve which implies that the test is not conservative for some values of

the unknown variance σ2.

7 Discussion

The bounds for the bias of the naive variance estimator in designs with interim re-

estimation of the sample size derived in this paper are quite sharp and simple. Hence,

they are useful for the judgment if the bias is negligible in a certain situation or not.

If an adjustment for the effects of the interim re-estimation is required, we recommend

doing an additive correction on the variance estimator, which reduces the bias with

minor impact on the standard deviation of the variance estimator. In the example

considered in this paper, it was satisfactory (i.e. the significance level was controlled)

to use the variance estimator with additive correction instead of the naive variance

estimator in the test statistic.
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A Proofs

Lemma A.1 Let c > 0 be arbitrary. Then we have for the variance estimator S2
1 of

the first stage the inequality

Cov

{

S2
1 ,

1

max(S2
1 , c)

}

> Cov

(

S2
1 ,

1

S2
1

)

Proof: Let g be the Lebesgue density of S2
1 . We have

0 =
1

c

∫
∞

0

(x − σ2)g(x)dx >
1

c

∫ c

0

(x − σ2)g(x)dx >

∫ c

0

1

x
(x − σ2)g(x)dx (A.1)

where the first equation follows since S2
1 is unbiased for σ2 and the last inequality is

clear in the case c ≤ σ2. In the case σ2 < c, the last inequality follows by

1

c

∫ c

0

(x − σ2)g(x)dx

︸ ︷︷ ︸

<0

>
1

σ2

∫ c

0

(x − σ2)g(x)dx >

∫ c

0

1

x
(x − σ2)g(x)dx.

The expression (A.1) implies

∫
∞

0

(x − σ2)
1

max(x, c)
g(x)dx >

∫
∞

0

(x − σ2)
1

x
g(x)dx

which is equivalent to the assertion of the lemma.

Lemma A.2 (Wittes et. al. (1999)) The bias of the variance estimator S2 is given by

E(S2 − σ2) = (n1 − 1)Cov

(

S2
1 ,

1

n − 1

)
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Proof: Wittes et. al. (1999).

Proof of Theorem 4.1: The upper bound, 0, is well known, see for example Wittes

et. al. (1999). For the lower bound, we use the preceding lemmas:

E(S2 − σ2) = (n1 − 1)Cov

(

S2
1 ,

1

n − 1

)
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For the last equality, we have used E (σ2/S2
1) = E {(2n1 − 2)/X} = 2(n1 −1)EX−1 =

(n1 − 1)/(n1 − 2) where X is a chi-squared distributed random variable with 2n1 − 2

degrees of freedom. The expected value of X−1 can be derived, for example, from

Johnson, Kotz and Balakrishnan (1994), p.421.

Proof of Theorem 4.3: Using Lemma A.2, we have
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. (A.2)

Here, 1 is the indicator function and X is again a chi-squared distributed random

variable with 2n1 − 2 degrees of freedom. Let fν be the density of the chi-square
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distribution with ν degrees of freedom and c > 0 arbitrary. It can be shown that

∫ c

0

xf2n1−2(x)dx = (2n1 − 2)F2n1
(c),

∫
∞

c

1

x
f2n1−2(x)dx =

1

2n1 − 4
{1 − F2n1−4(c)} .

Therefore, we see that (A.2) is equal to the formula in Theorem 4.3 and hence the

assertion of the theorem is shown.
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Figure 1: Bias of the naive variance estimator and bounds (n1 = 20, n2min = 10,

v = 4.3421).
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Figure 2: Bias of the naive variance estimator and the variance estimator with additive

correction (n1 = 20, n2min = 10, v = 4.3421).
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Figure 3: Standard deviation of different variance estimators (n1 = 20, n2min = 10,

v = 4.3421).
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Figure 4: Type I error of t-test and tac-test using the variance estimator with additive

correction (n1 = 20, n2 min = 10, α = 0.05, β = 0.9, ∆ = 2.2, v = 4.3421, 4 000 000

simulations).


