Advanced computational statistics, lecture 3

Frank Miller, Department of Computer and Information Science, Linköping University
Department of Statistics; Stockholm University
April 4, 2023

Course schedule

- Topic 1: Gradient based optimisation
- Topic 2: Stochastic gradient based optimisation
- Topic 3: Gradient free optimisation
- Topic 4: Optimisation with constraints
- Topic 5: EM algorithm and bootstrap
- Topic 6: Simulation of random variables
- Topic 7: Importance sampling

Course homepage:
http://www.adoptdesign.de/frankmillereu/adcompstat2023.html
Includes schedule, reading material, lecture notes, assignments

Convexity / Concavity and log likelihood

- Function g concave, if $g((\mathbf{x}+\mathbf{y}) / 2) \geq(g(\mathbf{x})+g(\mathbf{y})) / 2$ for all \mathbf{x}, \mathbf{y}

- If g is concave, a local maximum is a global maximum
- Log likelihood for exponential families is concave
- Log likelihoods can be non-concave (e.g. Cauchy-distribution in Problem 1.1)
- Deep learning optimisation problems are often non-concave / non-convex and have multiple local extrema

Today's schedule: gradient free methods

- Particle swarm optimisation (PSO)
- Idea
- Different versions
- Theoretical investigations
- Simulated annealing
- Idea (for the generic optimisation problem)
- Simulated annealing for combinatorial optimisation
- Theoretical basis
- To compare algorithms or hyperparameter choices by empirical studies
- Nelder-Mead algorithm

Particle swarm optimisation

- Swarm of N particles
- Position of particle i
at iteration $\mathrm{t}+1: \boldsymbol{x}_{i}^{(t+1)}$
- Velocity of particle i at iteration t+1: $\boldsymbol{v}_{i}^{(t+1)}$
- Best positions found so far:
- Best location found by particle i: $\boldsymbol{p}_{\text {best, } i}^{(t)}$
- Global best solution found: $\boldsymbol{g}_{\text {best }}^{(t)}$

Particle swarm optimisation

- Movement of particle i at iteration $\mathrm{t}+1$:
- $\boldsymbol{x}_{i}^{(t+1)}=\boldsymbol{x}_{i}^{(t)}+v_{i}^{(t+1)}$
- $\boldsymbol{v}_{i}^{(t+1)}=\mathrm{w} \boldsymbol{v}_{i}^{(t)}+c_{1} R_{1}^{(t+1)}\left(\boldsymbol{p}_{\mathrm{best}, i}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)+c_{2} R_{2}^{(t+1)}\left(\boldsymbol{g}_{\mathrm{best}}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)$ inertia weight
cognitive component
social component
- $R_{1}^{(t+1)}$ and $R_{2}^{(t+1)}$ are uniformly distributed, runif ()

Particle swarm optimisation

- Bimodal normal mixture example from Lecture 1
- PSO with $\mathrm{s}=12$ particles using psoptim (in R-package pso)
- Iteration 1 (black)
- Iteration 2 (red)
- Iteration 3 (green)
- Iteration 4 (blue)
- Iteration 5 (light blue)
- Iteration 20 (yellow)

- Iteration 40 (pink)

Particle swarm optimisation

- Bimodal normal mixture example from Lecture 1
- In some runs, the local maximum is identified as global maximum
- Risk to remain at a local maximum can be reduced if not all particles are informed about the global best solution
- Option control=list($\mathrm{p}=$) controls proportion informed; default 1 - $(11 / 12)^{\wedge} 3=0.23$.

Particle swarm optimisation

- Example call:
- pso <- Dimension of problem
- pso <- psoptim(par=rep (NA, 2),
$\mathrm{f}=\mathrm{n}=\mathrm{g}$, \downarrow Function to optimise
lower=-1, upper=3, Search space
control=list (using vectors as limits enables different limits for the dimensions)
fnscale $=-1$, For maximisation

- Some further options: $\mathbf{c . p}=c_{1}$ (cognitive comp.), $\mathbf{c . g =} c_{2}$ (social comp.), $\mathrm{w}=w$ (inertia weight/exploitation const.), trace=1 (output of tracing info)

Particle swarm optimisation - versions

- PSO first suggested: 1995 by Kennedy and Eberhart
- Clerc (2016) distinguishes following (main) versions:
- 1998. A basic version
- SPSO 2007 ("Standard PSO")
-SPSO 2011

Particle swarm optimisation - inertia weight

- Movement of particle i at iteration $\mathrm{t}+1$:
- $x_{i}^{(t+1)}=\boldsymbol{x}_{i}^{(t)}+v_{i}^{(t+1)}$
- $\boldsymbol{v}_{i}^{(t+1)}=\mathrm{w} \boldsymbol{v}_{i}^{(t)}+c_{1} R_{1}^{(t+1)}\left(\boldsymbol{p}_{\text {best }, i}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)+c_{2} R_{2}^{(t+1)}\left(\boldsymbol{g}_{\text {best }}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)$
- In the first version from 1995, the inertia weight w was not included
- Particle swarm might "explode"
- Explosion can be prevented by introducing maximum velocity
- Alternatively, inertia weight w < 1 can prevent explosion
- Included in basic version from 1998

Particle swarm optimisation - dimensions

- In first versions including 1998-basic version and SPSO 2007, random variables applied for each dimension separately:
- $\boldsymbol{v}_{i}^{(t+1)}=\mathrm{w} \boldsymbol{v}_{i}^{(t)}+c_{1} \boldsymbol{R}_{1}^{(t+1)} \otimes\left(\boldsymbol{p}_{\text {best }, i}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)+c_{2} \boldsymbol{R}_{2}^{(t+1)} \otimes\left(\boldsymbol{g}_{\text {best }}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)$ where \otimes is componentwise multiplication and $\boldsymbol{R}_{k}^{(t+1)}$ are vectors
- v[i] <- w*v[i] + c1*runif(p)*(pbest[i]-x[i]) + c2*runif(p)*(gbest-x[i])
where $v[i], x[i], ~ p b e s t[i], ~ g b e s t ~ v e c t o r s ~ f o r ~ e a c h ~ p a r t i c l e ~ i ~$
- In SPSO 2011, same random variable used for all dimensions leading to movement in hyperspheres:

$$
\text { - } \boldsymbol{v}_{i}^{(t+1)}=\mathrm{w} \boldsymbol{v}_{i}^{(t)}+c_{1} R_{1}^{(t+1)}\left(\boldsymbol{p}_{\mathrm{best}, i}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)+c_{2} R_{2}^{(t+1)}\left(\boldsymbol{g}_{\mathrm{best}}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)
$$

- v[i] <- w*v[i] + cl*runif(1)* (pbest[i]-x[i]) + c2*runif(1)*(gbest-x[i])

Particle swarm optimisation - dimensions

- Velocity of particle i at iteration $t+1$:
- $\boldsymbol{v}_{i}^{(t+1)}=\mathrm{w} \boldsymbol{v}_{i}^{(t)}+c_{1} R_{1}^{(t+1)}\left(\boldsymbol{p}_{\mathrm{best}, i}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)+c_{2} R_{2}^{(t+1)}\left(\boldsymbol{g}_{\mathrm{best}}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)$
- In SPSO 2011, same random variable used for all dimensions leading to movement in hyperspheres

Particle swarm optimisation - dimensions

- In version SPSO 2011, particles can move only in hyperspace spanned by starting particles
- Disadvantages:
- If dimension of problem p is large in relation to swarm size $s, ~ e . g . ~ p>s$, optimisation done only in a subspace and high risk that optimum is missed
- Even if starting particles well distributed, they might become close to a hyperspace after some iterations
- Advantages:
- Problem with dependence on coordinate system and with "biased search" is reduced; finds optima along axes and diagonal easier (Clerc, 2016)
- Linearly constrained problems can easily be handled (see L4)

PSO - choice of hyperparameters

- Velocity of particle i at iteration $\mathrm{t}+1$:
- $\boldsymbol{v}_{i}^{(t+1)}=\mathrm{w} \boldsymbol{v}_{i}^{(t)}+c_{1} R_{1}^{(t+1)}\left(\boldsymbol{p}_{\text {best }, i}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)+c_{2} R_{2}^{(t+1)}\left(\boldsymbol{g}_{\text {best }}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)$
- Hyperparameters to choose: w, c_{1}, c_{2}
- Particles should not diverge
- "Stability analyses" had been done - these are simplified analytical computations, for example:
- Assume one dimensional case,
- Assume static $\boldsymbol{p}_{\text {best, } i}^{(t)}=\boldsymbol{p}_{\text {best, } i}$ and $\boldsymbol{g}_{\text {best }}^{(t)}=\boldsymbol{g}_{\text {best }}$ ("stagnation assumption")
- Ignore randomness (replace $R_{k}^{(t+1)}$ by expected value $1 / 2$)
- Derive requirements for w, c_{1}, c_{2} such that $\boldsymbol{x}_{i}^{(t)}$ "converges"

PSO - choice of hyperparameters

- Velocity of particle i at iteration $\mathrm{t}+1$:
- $\boldsymbol{v}_{i}^{(t+1)}=\mathrm{w} \boldsymbol{v}_{i}^{(t)}+c_{1} R_{1}^{(t+1)}\left(\boldsymbol{p}_{\mathrm{best}, i}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)+c_{2} R_{2}^{(t+1)}\left(\boldsymbol{g}_{\mathrm{best}}^{(t)}-\boldsymbol{x}_{i}^{(t)}\right)$
- Standard choice in SPSO 2007, based originally on stability analyses from Clerc and Kennedy (2002):
- $w=\frac{1}{2 \ln (2)}=0.721$,
- $c_{1}=c_{2}=\frac{1}{2}+\ln (2)=1.193$
- Since deterministic $R_{k}^{(t+1)}=\frac{1}{2}$ and static $\boldsymbol{p}_{\text {best }}, \boldsymbol{g}_{\text {best }}$ are used in stability analyses, no distinctive requirements for c_{1} and c_{2} are obtained and a default is often just $c_{1}=c_{2}$
- Write now $C_{k}^{(t+1)}=c_{k} R_{k}^{(t+1)} \sim U n i f\left[0, c_{k}\right], k=1,2$.

Particle swarm optimisation - stability analyses

- Movement of specific particle at iteration $\mathrm{t}+1$ (drop index i):
- $\boldsymbol{x}^{(t+1)}=\boldsymbol{x}^{(t)}+\boldsymbol{v}^{(t+1)}$
- $\boldsymbol{v}^{(t+1)}=\mathrm{w} \boldsymbol{v}^{(t)}+C_{1}^{(t+1)}\left(\boldsymbol{p}_{\mathrm{best}}^{(t)}-\boldsymbol{x}^{(t)}\right)+C_{2}^{(t+1)}\left(\boldsymbol{g}_{\mathrm{best}}^{(t)}-\boldsymbol{x}^{(t)}\right)$
- Focusing on particle locations, we can describe PSO as:

$$
\begin{aligned}
& \boldsymbol{x}^{(t+1)}=\boldsymbol{x}^{(t)}+\boldsymbol{v}^{(t+1)} \\
& =\boldsymbol{x}^{(t)}+\mathrm{w} \boldsymbol{v}^{(t)}+C_{1}^{(t+1)}\left(\boldsymbol{p}_{\text {best }}^{(t)}-\boldsymbol{x}^{(t)}\right)+C_{2}^{(t+1)}\left(\boldsymbol{g}_{\text {best }}^{(t)}-\boldsymbol{x}^{(t)}\right) \\
& =\boldsymbol{x}^{(t)}+\mathrm{w}\left(\boldsymbol{x}^{(t)}-\boldsymbol{x}^{(t-1)}\right)+C_{1}^{(t+1)}\left(\boldsymbol{p}_{\text {best }}^{(t)}-\boldsymbol{x}^{(t)}\right)+C_{2}^{(t+1)}\left(\boldsymbol{g}_{\text {best }}^{(t)}-\boldsymbol{x}^{(t)}\right) \\
& =\boldsymbol{x}^{(t)}\left(1+w-C_{1}^{(t+1)}-C_{2}^{(t+1)}\right)-\mathrm{w} \boldsymbol{x}^{(t-1)}+C_{1}^{(t+1)} \boldsymbol{p}_{\text {best }}^{(t)}+C_{2}^{(t+1)} \boldsymbol{g}_{\text {best }}^{(t)}+\boldsymbol{v}^{(t)}
\end{aligned}
$$

- Therefore, a single equation is sufficient to describe the PSO iterations ($\boldsymbol{x}^{(t+1)}$ depends then on both $\boldsymbol{x}^{(t)}$ and $\boldsymbol{x}^{(t-1)}$)

Particle swarm optimisation - stability analyses

- Movement of specific particle at iteration $\mathrm{t}+1$ with PSO:

$$
\boldsymbol{x}^{(t+1)}=\boldsymbol{x}^{(t)}\left(1+w-C_{1}^{(t+1)}-C_{2}^{(t+1)}\right)-\mathrm{w} \boldsymbol{x}^{(t-1)}+C_{1}^{(t+1)} \boldsymbol{p}_{\text {best }}^{(t)}+C_{2}^{(t+1)} \boldsymbol{g}_{\text {best }}^{(t)}
$$

- Stability analyses were improved during the two previous decades, see Bonyadi and Michalewicz (2016) and Cleghorn and Engelbrecht (2018); definitions below follow the latter
- Order-1 stability

A sequence ($\boldsymbol{x}^{(t)}$) of p -dimensional random variables is called order-1 stable if $\mathrm{E}\left[\boldsymbol{x}^{(t)}\right] \rightarrow \boldsymbol{x}_{\boldsymbol{E}}$ for some \boldsymbol{x}_{E}

- Order-2 stability

A sequence ($\boldsymbol{x}^{(t)}$) of p -dimensional random variables is called order-2 stable if $\operatorname{Var}\left[\boldsymbol{x}^{(t)}\right] \rightarrow \boldsymbol{x}_{V}$ for some \boldsymbol{x}_{V}

Particle swarm optimisation - stability analyses

- Movement of specific particle at iteration $\mathrm{t}+1$ with PSO:

$$
\boldsymbol{x}^{(t+1)}=\boldsymbol{x}^{(t)}\left(1+w-C_{1}^{(t+1)}-C_{2}^{(t+1)}\right)-w \boldsymbol{x}^{(t-1)}+C_{1}^{(t+1)} \boldsymbol{p}_{\text {best }}^{(t)}+C_{2}^{(t+1)} \boldsymbol{g}_{\text {best }}^{(t)}
$$

- Bonyadi and Michalewicz (2016) interpret each of $C_{1}^{(t+1)}, C_{2}^{(t+1)}$, $\boldsymbol{p}_{\text {best }}^{(t)} \boldsymbol{g}_{\text {best }}^{(t)}$ as iid random variables
- This generalises assumptions that these values are fixed values; it weakens the stagnation assumption
- The iid assumption for $\boldsymbol{p}_{\text {best }}(t), \ldots$ and for $\boldsymbol{g}_{\text {best }^{(t)}}, t=1, \ldots$ still need to be seen as approximations

Particle swarm optimisation - stability analyses

- We consider the one-dimensional case ($\mathrm{p}=1$) now
- Movement of specific particle at iteration $\mathrm{t}+1$ with PSO:

$$
x^{(t+1)}=x^{(t)}\left(1+w-C_{1}^{(t+1)}-C_{2}^{(t+1)}\right)-\mathrm{w} x^{(t-1)}+C_{1}^{(t+1)} p_{\text {best }}^{(t)}+C_{2}^{(t+1)} g_{\text {best }}^{(t)}
$$

- To write the iterations as a linear one-step relation, we write
and

$$
\mathbf{z}^{(t+1)}=\left(x^{(t+1)}, x^{(t)}\right)^{T}, \quad U=1+w-C_{1}^{(t+1)}-C_{2}^{(t+1)}
$$

$$
\mathbf{z}^{(t+1)}=\left(\begin{array}{cc}
U & -w \\
1 & 0
\end{array}\right) \mathbf{z}^{(t)}+\binom{C_{1}^{(t+1)} p_{\mathrm{best}}^{(t)}+C_{2}^{(t+1)} g_{\mathrm{best}}^{(t)}}{0}
$$

- Since U and $\mathbf{z}^{(t)}$ are independent, we have

$$
E \mathbf{z}^{(t+1)}=\left(\begin{array}{cc}
E U & -w \\
1 & 0
\end{array}\right) E \mathbf{z}^{(t)}+\binom{E\left[C_{1}^{(t+1)} p_{\text {best }}^{(t)}\right]+E\left[C_{2}^{(t+1)} g_{\text {best }}^{(t)}\right]}{0}
$$

$>$ Sequence $E \mathbf{z}^{(t+1)}$ is of form $E \mathbf{z}^{(t+1)}=\boldsymbol{M} E \mathbf{z}^{(t)}+\boldsymbol{b}$

Particle swarm optimisation - stability analyses

- Sequence $E \mathbf{z}^{(t+1)}$ is of form $E \mathbf{z}^{(t+1)}=\boldsymbol{M} E \mathbf{z}^{(t)}+\boldsymbol{b}$
- Functional analysis says that $E z^{(t)}$ converges if the spectral radius of \boldsymbol{M} is <1, see Bonyadi and Michalewicz (2016)'s Lemma 1
- Spectral radius $\rho(\boldsymbol{M})$ of $\boldsymbol{M} \in \mathbb{R}^{p \times p}$ is $\rho(\boldsymbol{M})=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{p}\right|\right\}$ where λ_{j} are the p (real or complex) eigenvalues of \boldsymbol{M}
- Recall that a non-symmetric $\mathbb{R}^{p \times p}$ matrix still has p eigenvalues as long as we allow for complex eigenvalues
- If $\lambda=r+c$ i then $|\lambda|=\sqrt{r^{2}+c^{2}} ; \mathbf{R}$ can cope with this easily:
- $>\mathrm{M}<-$ matrix $(\mathrm{c}(-0.66,1,-0.72,0)$, ncol=2)
> eigen (M) \$values
[1] -0.33+0.7817289i -0.33-0.7817289i
$>\max (a b s(e i g e n(M)$ \$values)) \# spectral radius
[1] 0.8485281

Particle swarm optimisation - stability analyses

- We have

$$
E \mathbf{z}^{(t+1)}=\left(\begin{array}{cc}
E U & -w \\
1 & 0
\end{array}\right) E \mathbf{z}^{(t)}+\binom{E\left[C_{1}^{(t+1)} p_{\mathrm{best}}^{(t)}\right]+E\left[C_{2}^{(t+1)} g_{\mathrm{best}}^{(t)}\right]}{0}
$$

- Compute spectral radius of $\left(\begin{array}{cc}E U & -w \\ 1 & 0\end{array}\right)$
- Eigenvalues: $0=\operatorname{det}\left(\begin{array}{cc}\lambda-E U & w \\ -1 & \lambda\end{array}\right)=\lambda^{2}-\lambda E U+w \Rightarrow \lambda_{1,2}=\frac{E U \pm \sqrt{E U^{2}-4 w}}{2}$
- $E U=1+w-E C_{1}^{(t+1)}-E C_{2}^{(t+1)}=1+w-\frac{c_{1}+c_{2}}{2}$
- One can show:

$$
\begin{aligned}
& \rho(M)=\max \left\{\frac{\left|E U+\sqrt{E U^{2}-4 w}\right|}{2}, \frac{\left|E U-\sqrt{E U^{2}-4 w}\right|}{2}\right\}<1 \text { iff } \\
& -1<w<1 \text { and } 0<\frac{c_{1}+c_{2}}{2}<2(w+1)
\end{aligned}
$$

- Assume $c=c_{1}=c_{2}$

Particle swarm optimisation - stability analyses

- Assume $c=c_{1}=c_{2} \cdot E U=1+w-c$
- One can show:

$$
\begin{aligned}
& \rho(M)=\max \left\{\frac{\left|E U+\sqrt{E U^{2}-4 w}\right|}{2}, \frac{\left|E U-\sqrt{E U^{2}-4 w}\right|}{2}\right\}<1 \text { iff } \\
& -1<w<1 \text { and } 0<c<2(w+1)
\end{aligned}
$$

- If it would be too difficult to show the above, one could calculate the maximum eigenvalue for a grid of (w, c)-pairs and plot the cases when it is <1 (see R code on homepage)

w

w

Particle swarm optimisation - stability analyses

- To do stability analyses for order-2 stability (about the limit of the variance $\operatorname{Var}\left(\mathbf{z}^{(t+1)}\right)$), we can investigate

$$
\mathbf{z}^{(t+1)}=\left(x^{(t+1)}, x^{(t)},\left(x^{(t+1)}\right)^{2},\left(x^{(t)}\right)^{2}, x^{(t+1)} x^{(t)}\right)^{T}
$$

- The iterations can be written as system

$$
E \mathbf{z}^{(t+1)}=\left(\begin{array}{ccccc}
E U & -w & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
2 E[U P] & -2 w E P & E\left[U^{2}\right] & w^{2} & -2 w E U \\
0 & 0 & 1 & 0 & 0 \\
E P & 0 & E U & 0 & -w
\end{array}\right) E \mathbf{z}^{(t)}+\boldsymbol{b}
$$

where $P=C_{1}^{(t+1)} p_{\text {best }}^{(t)}+C_{2}^{(t+1)} g_{\text {best }}^{(t)}$

Particle swarm optimisation - stability analyses

- $c=c_{1}=c_{2}$
- $-1<w<1$ and
$0<c<2(w+1)$

- Sequence $\left(\mathbf{z}^{(t+1)}\right)$ is order-2 stable if:
$-1<w<1$ and

$$
0<c<\frac{12\left(w^{2}-1\right)}{5 w-7}
$$

- Default in R-package pso based on Clerc and Kennedy (2002):

$$
w=\frac{1}{2 \ln (2)}=0.721, c=c_{1}=c_{2}=\frac{1}{2}+\ln (2)=1.193
$$

PSO - choice of hyperparameters

- Based on stability analysis, choose w, c_{1}, c_{2} respecting
$-1<w<1$ and $0<c_{1}+c_{2}<\frac{24\left(w^{2}-1\right)}{5 w-7}$
- $\mathrm{w}>\mathrm{O}$ is in spirit of the algorithm's idea
- Another hyperparameter to be chosen: swarm size
- Swarm size motivated by empirical studies based on standard optimisation problems
- SPSO 2007: $10+[2 \sqrt{p}]$
- Clerc (2012) shows with 12 standard optimisation problems:
- usually swarm sizes larger than $10+[2 \sqrt{p}]$ better,
- dependence on dimension p is weak
- SPSO 2011: choice of user; suggested: 40

PSO - topologies for particles

- Particles "inform" other particles about their results
- In the original PSO, each particle informs all others
- To ensure that not all particles are attracted prematurely by particle at a local optimum, do not inform all particles
- The structure how information flows is specified in "topologies"
- Global top. (all inform all)

Ring top. (all inform their two "neighbours")

PSO - exploration versus exploitation

- Exploration of the search space
- Exploitation around a promising position
- The topology: A sparce topology (e.g. ring top.) ensures more exploration compared to a dense one (e.g. global top.)
- Parameter w: Larger w leads to more exploration
- Parameters c_{1} and c_{2} : Smaller c_{2} (and c_{1}) lead to more exploration
- Clerc (2016; Section 8.6.4.1): The experimental evidence for such dependencies [on w, $\mathrm{c}_{1}, \mathrm{c}_{2}$] is weak

Simulated annealing

AlphaOpt (2017). Introduction To Optimization: Gradient Free Algorithms (2/2) - Simulated Annealing, Nelder-Mead (0:15-1:35)

Simulated annealing

- Given iteration $\mathrm{x}^{(\mathrm{t})}$, generate $\mathrm{x}^{(\mathrm{t}+1)}$ as follows:

1. Sample a candidate x^{*} from a proposal distribution $\mathrm{p}\left(\cdot \mid \mathrm{x}^{(\mathrm{t})}\right)$
2. Compute $h\left(x^{(t)}, x^{*}\right)=\exp \left(\frac{g\left(x^{*}\right)-g\left(x^{(t)}\right)}{\tau_{j}}\right)$

$$
\begin{aligned}
& g\left(x^{(t)}\right)-g\left(x^{*}\right) \\
& \text { for } \\
& \text { minimisation }
\end{aligned}
$$

3. Define next iteration $\mathrm{x}^{(t+1)}$ according to

$$
x^{(t+1)}=\left\{\begin{array}{l}
x^{*}, \text { with probability } \min \left\{h\left(x^{(t)}, x^{*}\right), 1\right\} \\
x^{(t)}, \text { otherwise }
\end{array}\right.
$$

4. Set $\mathrm{t}<-\mathrm{t}+1$ and repeat 1.-3. m_{j} times
5. Update $\tau_{j}=\alpha\left(\tau_{j-1}\right)$ and $m_{j}=\beta\left(m_{j-1}\right)$; set $\mathbf{j}<-\mathbf{j}+1$; go to 1
τ_{j} is temperature; function α should slowly decrease it; function β should be increasing

Simulated annealing

- Initially, also "bad" proposals are accepted
- With decreasing temperature, accept only improvements
- This helps to explore first and avoids convergence to a local maximum too early
- Algorithm which has therefore chances to find the global optimum in presence of multiple local optima
- method="SANN" of R function optim is "a variant of simulated annealing" (documentation of optim)
- Initial temperature seems to be important choice (can be changed e.g. by control=list (temp=0.01) ; default 10 might be bad)

LINKÖPING
UNIVERSITY

Simulated annealing: proposal distribution

- Step 1 in simulated annealing iteration rule:

1. Sample a candidate x^{*} from a proposal distribution $p\left(\cdot \mid x^{(t)}\right)$

- Proposal distribution could be uniform distribution on a neighbourhood of $\mathrm{x}^{(t)}$; for a unidimensional optimisation problem:

```
xs <- xt + runif(n=1, min=-1, max=1)
```

- Instead of Unif[-1,1], a distribution on a smaller or larger neighbourhood could be used
- But also, normal distribution $N\left(0, \sigma^{2}\right)$ or other symmetric distribution around o might be added to $x^{(t)}$ instead
- For multidimensional cases, one could use iid components, a uniform distribution on a ball around $\mathbf{x}^{(t)}$ or a multivariate normal distribution with mean $\mathbf{x}^{(t)}$

Simulated annealing - Illustration

- For illustration, we consider two-dimensional function g according to contour lines in figure (one global and one local maximum) and fixed temperature τ
- Proposal distribution
$\mathrm{p}\left(\mathrm{x}^{*} \mid \mathrm{x}^{(\mathrm{t})}\right)=\mathrm{p}\left(\mathrm{x}^{(\mathrm{t})} \mid \mathrm{x}^{*}\right)$
$=\frac{1}{\pi r^{2}} \mathbf{1}\left\{\left\|x^{(t)}-x^{*}\right\|<r\right\}$
for some constant r (here=1)

Simulated annealing - Illustration

- Proposal distribution
$\mathrm{p}\left(\mathrm{x}^{*} \mid \mathrm{x}^{(\mathrm{t})}\right)=\mathrm{p}\left(\mathrm{x}^{(\mathrm{t})} \mid \mathrm{x}^{*}\right)$
$=\frac{1}{\pi r^{2}} \mathbf{1}\left\{\left\|x^{(t)}-x^{*}\right\|<r\right\}$
for some constant r (here=1)
- Start here with $\mathrm{x}^{(0)}=(1,-0.5)$
- Randomize uniformly on unit circle around $\mathrm{x}^{(0)}$ (proposal distribution); result $\mathrm{x}^{*}=(0.58,0.08)$

- $g\left(x^{*}\right)=0.296>g\left(x^{(0)}\right)=0.098$; so this was an uphill step and is automatically accepted $\left(h\left(x^{(t)}, x^{*}\right)>1\right)$

Simulated annealing - Illustration

- $\mathrm{X}^{(0)}=(1,-0.5)$
- Uphill steps: $\mathrm{x}^{(1)}=(0.58,0.08)$
- $\mathrm{x}^{(2)}=(-0.33,0.13)$
- $\mathrm{x}^{(3)}=(-0.23,0.05)$
- Then downhill step proposed: $\mathrm{x}^{*}=(-0.32,0.4), h\left(x^{(t)}, x^{*}\right)=0.774$
- Random Unif(0,1) generated: 0.573 and since this is smaller than $h=0.774$, $x^{(4)}=x^{*}=(-0.32,0.4)$ is accepted

- Again downhill step proposed: $\mathrm{x}^{*}=(-0.67,1.31)$, $h\left(x^{(t)}, x^{*}\right)=0.560 ;$ random $\operatorname{Unif}(0,1): 0.890$ and rejection of x^{*}
- $\mathrm{x}^{(5)}=\mathrm{x}^{(4)}=(-0.32,0.4)$

Combinatorial optimisation

- Generic optimisation problem:
- $\boldsymbol{x} p$-dimensional vector, $g: \mathbb{R}^{p} \rightarrow \mathbb{R}$ function
- We search \boldsymbol{x}^{*} with $g\left(\boldsymbol{x}^{*}\right)=\min g(\boldsymbol{x})$
- Now, we consider also optimisation problems which cannot exactly be formulated according to the generic one
- Especially, function g might be defined on another space than \mathbb{R}^{p}
- Generalized optimisation problem:
- $x p$-dimensional vector, $g: \mathbb{S} \rightarrow \mathbb{R}$ function for some set \mathbb{S}
- We search \boldsymbol{x}^{*} with $g\left(\boldsymbol{x}^{*}\right)=\min g(\boldsymbol{x})$

Example: Multiple linear regression

- Generalized optimisation problem:
- $\boldsymbol{x} p$-dimensional vector, $g: \mathbb{S} \rightarrow \mathbb{R}$ function for some set \mathbb{S}
- We search \boldsymbol{x}^{*} with $g\left(\boldsymbol{x}^{*}\right)=\min g(\boldsymbol{x})$
- Multiple linear regression with q predictors
- Desired to choose best model based on criterion like AIC
- There are 2^{q} possible models
- If q small, AIC of all models can be computed (exhaustive search); for q larger, this is impossible (e.g. $q=50,1 \mathrm{~ms}$ to compute an AIC
\rightarrow more than 35000 years needed!)
- One model can be represented as element of $\mathbb{S}=\{0,1\}^{q}$ ($1=$ predictor included in model, o otherwise)

Example: Multiple linear regression

- Generalized optimisation problem:
- xp-dimensional vector, $g: \mathbb{S} \rightarrow \mathbb{R}$ function for some set \mathbb{S}
- We search \boldsymbol{x}^{*} with $g\left(\boldsymbol{x}^{*}\right)=\min g(\boldsymbol{x})$
- Optimisation problem: Which model gives best AIC?
- Model 1: (1, o, o, o, 1, 1, o, 1, ...)

Model 2: (1, 1, 1, o, 1, 1, o, o, ...)

- Which models are "close" to each other? (Need metric on $\mathbb{S}=\{0,1\}^{q}$) What is a neighbourhood of a model?
- Apply simulated annealing e.g. with neighbourhood being all models which differ by one predictor (for proposal dist.)
- Uniform distribution on neighbourhood can be used

Example: Multiple linear regression

- Generalized optimisation problem:
- $x p$-dimensional vector, $g: \mathbb{S} \rightarrow \mathbb{R}$ function for some set \mathbb{S}
- We search \boldsymbol{x}^{*} with $g\left(\boldsymbol{x}^{*}\right)=\min g(\boldsymbol{x})$
- Arbitrary starting model generated (e.g. uniform distribution on $\mathbb{S}=\{0,1\}^{q}$, xs <- rbinom(q, size=1, prob=0.5))
- See example in Givens and Hoeting (2013), Section 3.3, with 27 predictors

Recall from L1:
 Maximising information of experimental designs

- Regression model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ (where $\boldsymbol{\varepsilon}$ has iid components)
- \mathbf{X} design matrix (depends on choice of observational points)
- Covariance matrix of Least Squares estimate $\widehat{\boldsymbol{\beta}}$ is

$$
\operatorname{Cov}(\widehat{\boldsymbol{\beta}})=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-\mathbf{1}} \cdot \text { const }
$$

- Choose design of an experiment such that $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}$ "large"
- D-optimality: $g\left(\right.$ "design") $=\operatorname{det}\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)$
- We search design ${ }^{*}$ with $g\left(\right.$ design $\left.^{*}\right)=\max g($ design $)$

Ex: Maximising information of experimental designs

- Regression model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \operatorname{Cov}(\widehat{\boldsymbol{\beta}})=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{\mathbf{- 1}}$. const
- We search design* with $g\left(\right.$ design $\left.^{*}\right)=\max g($ design $)$
- Example: cubic regression, $y=\beta_{0}+\beta_{1} w+\beta_{2} w^{2}+\beta_{3} w^{3}+\varepsilon$, w can be chosen in $[-1,1]$, but practical circumstances require here a distance between design points of 0.05
- Therefore, we allow design points $\{-1,-0.95,-0.9, \ldots, 1\}$ and at most one observation can be done at each point
- Each observation has a cost; and we want to minimise the penalized D-optimality \#observations * $0.2-\log \left(\operatorname{det}\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)\right)$

$$
\boldsymbol{X}=\left(\begin{array}{cccc}
1 & w_{1} & w_{1}^{2} & w_{1}^{3} \\
1 & w_{2} & w_{2}^{2} & w_{2}^{3} \\
\ldots & \ldots & \ldots & \ldots \\
1 & w_{n} & w_{n}^{2} & w_{n}^{3}
\end{array}\right)
$$

Ex: Maximising information of experimental designs

- Example: cubic regression, $y=\beta_{0}+\beta_{1} w+\beta_{2} w^{2}+\beta_{3} w^{3}+\varepsilon$, w can be chosen in $[-1,1]$, but practical circumstances require here a distance between design points of 0.05
- Therefore, we allow design points $\{-1,-0.95,-0.9, \ldots, 1\}$ and at most one observation can be done at each point
- A design can be represented by a vector in $\mathbb{S}=\{0,1\}^{41}$ where o means that no observation is done at a design point and 1 means that one observation is made there
- How can a reasonable neighbourhood on \mathbb{S} look like here?

Simulated annealing

- Given iteration $\mathrm{x}^{(\mathrm{t})}$, generate $\mathrm{x}^{(\mathrm{t}+1)}$ as follows:

1. Sample a candidate x^{*} from a proposal distribution $\mathrm{p}\left(\cdot \mid \mathrm{x}^{(\mathrm{t})}\right)$
2. Compute $h\left(x^{(t)}, x^{*}\right)=\exp \left(\frac{g\left(x^{*}\right)-g\left(x^{(t)}\right)}{\tau_{j}}\right)$

$$
\begin{aligned}
& g\left(x^{(t)}\right)-g\left(x^{*}\right) \\
& \text { for } \\
& \text { minimisation }
\end{aligned}
$$

3. Define next iteration $\mathrm{x}^{(t+1)}$ according to

$$
x^{(t+1)}=\left\{\begin{array}{l}
x^{*}, \text { with probability } \min \left\{h\left(x^{(t)}, x^{*}\right), 1\right\} \\
x^{(t)}, \text { otherwise }
\end{array}\right.
$$

4. Set $\mathrm{t}<-\mathrm{t}+1$ and repeat 1.-3. m_{j} times
5. Update $\tau_{j}=\alpha\left(\tau_{j-1}\right)$ and $m_{j}=\beta\left(m_{j-1}\right)$; set $\mathbf{j}<-j+1$; go to 1
τ_{j} is temperature; function α should slowly decrease it; function β should be increasing

Markov Chain Monte Carlo - Metropolis algorithm
 (Metropolis et al., 1953)

- Given a density $f(x)$ and aim is to generate a sample following f
- A starting value $\mathrm{x}^{(0)}$ is generated from some starting distribution
- Given observation $x^{(t)}$, generate $x^{(t+1)}$ as follows:

1. Sample candidate x^{*} from symmetric proposal dist. $p\left(\cdot \mid \mathrm{X}^{(\mathrm{t})}\right)$
symmetric proposal: $p\left(x^{(t)} \mid x^{*}\right)=p\left(x^{*} \mid x^{(t)}\right)$
2. Compute ratio $R\left(x^{(t)}, x^{*}\right)=\frac{f\left(x^{*}\right)}{f\left(x^{(t)}\right)}$
3. Sample $\mathrm{x}^{(\mathrm{t}+1)}$ according to

$$
x^{(t+1)}=\left\{\begin{array}{l}
x^{*}, \text { with probability } \min \left\{R\left(x^{(t)}, x^{*}\right), 1\right\} \\
x^{(t)}, \text { otherwise }
\end{array}\right.
$$

4. If more observations needed, set $t<-\quad t+1$; go to 1

Simulated annealing and Metropolis algorithm

- For fixed temperature τ, simulated annealing algorithm is a Metropolis algorithm
- Kirkpatrick et al. (1983) proposed name simulated annealing for using it as optimisation method
- $h\left(x^{(t)}, x^{*}\right)=\exp \left(\frac{g\left(x^{(t)}\right)-g\left(x^{*}\right)}{\tau_{j}}\right)=\frac{\exp \left(-\frac{g\left(x^{*}\right)}{\tau_{j}}\right)}{\exp \left(-\frac{g\left(x^{(t)}\right)}{\tau_{j}}\right)}=\frac{f\left(x^{*}\right)}{f\left(x^{(t)}\right)}=R\left(x^{(t)}, x^{*}\right)$
- Key ingredient of Metropolis and simulated annealing alg.: Markov chain $\boldsymbol{x}^{(\boldsymbol{t})}$ has limiting stationary distribution \boldsymbol{f}; for a proof see e.g. Koski (2009)
- Requirement for all: $x^{(t)}$ irreducible and aperiodic chain

Simulated annealing: stationary distribution for fixed temperature τ

- Fixed temperature τ : Markov chain $x^{(t)}$ has limiting stationary distribution with density proportional to $f(x)=\exp \left(-\frac{g(x)}{\tau}\right)$

Convergence of simulated annealing

- Convergence proofs see generated sequence either as sequence of homogeneous Markov chains (one for each τ) or as one inhomogeneous Markov chain
- For discrete $\mathbb{S}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and g having a finite set M of global minima, simulated annealing converges with probability $1 /|\mathrm{M}|$ to each of the M global minima (references for proofs in Givens and Hoeting, 2013); main idea:
- Stationary distribution proportional to: $\exp \left(-\frac{g(x)}{\tau}\right)$ or to $\exp \left(-\frac{g(x)-g_{\min }}{\tau}\right)$ with

$$
g_{\min }=\min \{g(x)\}
$$

- Therefore, if P is distribution according to stationary distribution,

$$
\rightarrow 0
$$

$$
\begin{aligned}
& \rightarrow 0 \text { for } x_{i} \notin M, \\
& \rightarrow 1 \text { for } x_{i} \in M
\end{aligned}
$$

Convergence of simulated annealing

- To achieve convergence to a global minimum (possibly in presence of local minima) in practise, one needs:
- Run iterations for each fixed temperature long enough such that convergence to stationary distribution achieved
- Cool temperature slowly enough such that iterations have time to escape from local minima
- Example from Givens and Hoeting (2013; p.73):
- 5 stages with 60 iterations, then
- 5 stages with 120 iterations, then
- 5 stages with 220 iterations
- From one stage to the next, τ is decreased by 10%,
 tau <- $0.9 *$ tau; final τ is $0.9^{15}=0.206^{*}$ initial τ

Simulated annealing: + and -

+Very easy to implement
+Theoretical property is good: theoretically, we can guarantee convergence to a global optimum even in the presence of local optima

+ Can even handle some non-standard optimisation problems
- In practice, convergence can be "maddeningly slow"
- One needs to play around with cooling schedule to ensure convergence in practice
- We need to run the algorithm "long enough" at each temperature (to ensure stationary distribution)
- We need to cool the temperature slowly enough (to allow escaping from local optima)

Comparisons of algorithms or hyperparameter choices based on empirical studies

- We have several options for optimisation algorithms
- Or - within one algorithm - we can choose some hyperparameters
- A possibility is to compare the options by running them on an example problem. Better, one might want to compare options for a set of easy and difficult optimisation problems
- For comparability, often "standard optimisation problems" used; see e.g. Liang et al. (2013)
- Can be mathematical functions or statistical optimisation problems

Comparisons of algorithms or hyperparameter choices based on empirical studies

- After choosing some standard optimisation problems, one needs to define a success criterion (example in Clerk, 2016)
- Possibility: count runs of algorithm leading to a solution x_{s} with $g\left(x_{s}\right)<g\left(x^{*}\right)+\delta$; here x^{*} true position of global minimum, and δ small (ideally $\delta<g\left(x_{L}\right)-g\left(x^{*}\right)$ for any local minimum x_{L})
- If true success rate for an algorithm is p, we observe a $\operatorname{Bin}(1, p)$-random variable in each run
$>$ Success rate has sd $\sqrt{\frac{p(1-p)}{n}}$ when doing n runs and you can do informed choice of n
- E.g. $p=0.8, n=100 \rightarrow \mathrm{sd}=0.04$.

Nelder-Mead algorithm

Nelder-Mead

- $\boldsymbol{x} p$-dimensional vector, $g: \mathbb{R}^{p} \rightarrow \mathbb{R}$ function
- We search \boldsymbol{x}^{*} with $g\left(\boldsymbol{x}^{*}\right)=\max g(\boldsymbol{x})$
- Nelder-Mead method is heuristic method for p-dimensional optimisation problem (default in R-function optim)
- Positive:
+No computation of derivatives necessary
- Negative:
- No theoretical guarantee for converge (counter examples exist)
- Might be slow
- Works often well, especially if p not too large

Nelder-Mead

- Idea: Work with simplex of $p+1$ points; i.e. for two-dimensional optimisation: work with triangle
- Aim that triangle includes maximum
- Choose arbitrary starting triangle
- Change vertices to "move the triangle upwards"

- Two animations:
- https://www.youtube.com/watch?v=HUqLxHfxWqU
- https://www.youtube.com/watch?v=KEGSLQ6TlBM

Nelder-Mead

- Identify worst vertex $\boldsymbol{x}_{\boldsymbol{w o r s t}}$ ($g\left(\boldsymbol{x}_{\boldsymbol{w o r s t}}\right)$ minimal among all vertices) and compute average \mathbf{c} of remaining vertices
- Let $\boldsymbol{x}_{\boldsymbol{b} \boldsymbol{b} \boldsymbol{t}}$ be best and $\boldsymbol{x}_{\boldsymbol{b a d}}$ be second worst vertex
- Rules for
- Reflection
- Expansion
- Outer contraction
- Inner contraction
- Shrinkage

Nelder-Mead

- Replace $\boldsymbol{x}_{\boldsymbol{w o r s t}}$ with one of $\boldsymbol{x}_{\boldsymbol{I}}, \boldsymbol{x}_{\boldsymbol{O}}, \boldsymbol{x}_{\boldsymbol{R}}, \boldsymbol{x}_{\boldsymbol{E}}$ (rule depends on values for $g\left(\boldsymbol{x}_{\text {worst }}\right), g\left(\boldsymbol{x}_{\text {bad }}\right), g\left(\boldsymbol{x}_{\text {best }}\right), g\left(\boldsymbol{x}_{I}\right), g\left(\boldsymbol{x}_{\boldsymbol{O}}\right), g\left(\boldsymbol{x}_{\boldsymbol{R}}\right), g\left(\boldsymbol{x}_{\boldsymbol{E}}\right)$; see Givens and Hoeting, page 47-48) and create new simplex/triangle

- Or in specific cases: Shrink (keep $\boldsymbol{x}_{\boldsymbol{b e s t}}$ and move all other vertices towards it)

Nelder-Mead

- Nelder-Mead algorithm is quite old, but still popular
- Research is ongoing e.g. about convergence results and variants of Nelder-Mead
- Note that Nelder-Mead can be used for dimension $p=1$ as well
- However, there exist better gradient free algorithms for $\mathrm{p}=1$
- R-function optimize uses gradient free algorithm with convergence order $\mathrm{q}=1.324$ (some requirements to function g necessary)

Solution x of $0=x^{3}-x-1$; (Brent, 1973)

References

- Brent, 1973. Algorithms for minimization without derivatives. Englewood Cliffs N.J.: Prentice-Hall.
- Bonyadi MR, Michalewicz Z (2016). Stability analysis of the particle swarm optimization without stagnation assumption. IEEE transactions on evolutionary computation, 20(5):814-819.
- Cleghorn CW, Engelbrecht AP (2018). Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intelligence, 12(1):1-22. An author version is available here.
- Clerc M (2012). Standard particle swarm optimization. Preprint, HAL open science.
- Clerc M (2016). Chapter 8: Particle swarms. In: Metaheuristics. (Siarry P ed.).
- Clerc M, Kennedy J (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE transactions on Evolutionary Computation, 6(1), 58-73.
- Givens GH, Hoeting JA (2013). Computational Statistics, 2nd edition. John Wiley \& Sons, Inc., Hoboken, New Jersey.
- Kennedy J, Eberhart R (1995). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE.
- Kirkpatrick S, Gelatt CD, Vecchi MP (1983). Optimization by Simulated Annealing. Science, 220(4598):671-680.
- Koski T (2009). Sf2955 Computer intensive methods MCMC - On the Discrete Metropolis-Hastings Algorithm. KTH, Stockholm. https://www.math.kth.se/matstat/gru/sf2955/metropolis3.pdf
- Liang, J. J., Qu, B. Y., \& Suganthan, P. N. (2013). Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 635(2).
- Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092.

