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• Topic 1: Gradient based optimisation

• Topic 2: Stochastic gradient based optimisation

• Topic 3: Gradient free optimisation

• Topic 4: Optimisation with constraints

• Topic 5: EM algorithm and bootstrap

• Topic 6: Simulation of random variables

• Topic 7: Importance sampling

Course homepage: 
http://www.adoptdesign.de/frankmillereu/adcompstat2023.html

Includes schedule, reading material, lecture notes, assignments
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• Function g concave, if g((x+y)/2)≥(g(x)+ g(y))/2 for all x,y

concave non-concave

• If g is concave, a local maximum is a global maximum

• Log likelihood for exponential families is concave

• Log likelihoods can be non-concave (e.g. Cauchy-distribution in Problem 1.1)

• Deep learning optimisation problems are often non-concave / non-convex 
and have multiple local extrema
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• Particle swarm optimisation (PSO)

• Idea

• Different versions

• Theoretical investigations

• Simulated annealing 

• Idea (for the generic optimisation problem)

• Simulated annealing for combinatorial optimisation

• Theoretical basis

• To compare algorithms or hyperparameter choices by empirical studies

• Nelder-Mead algorithm
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• Swarm of N particles
• Position of particle i

at iteration t+1: 𝒙𝑖
(𝑡+1)

• Velocity of particle i

at iteration t+1: 𝒗𝑖
(𝑡+1)

• Best positions found so far:
• Best location found 

by particle i: 𝒑best, 𝑖
𝑡

• Global best solution 

found: 𝒈best
𝑡
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• Movement of particle i at iteration t+1:

• 𝒙𝑖
(𝑡+1)

= 𝒙𝑖
(𝑡)

+ 𝒗𝑖
(𝑡+1)

• 𝒗𝑖
(𝑡+1)

= w𝒗𝑖
(𝑡)

+ 𝑐1𝑅1
(𝑡+1)

(𝒑best, 𝑖
𝑡

− 𝒙𝑖
(𝑡)
) + 𝑐2𝑅2

(𝑡+1)
(𝒈best

𝑡
− 𝒙𝑖

(𝑡)
)

• 𝑅1
(𝑡+1)

and 𝑅2
(𝑡+1)

are uniformly distributed, runif() 
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cognitive component social component

𝒗𝑖
(𝑡)

𝒑best, 𝑖
𝑡

𝒈best
𝑡

𝒙𝑖
(𝑡)

w

inertia weight
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• Bimodal normal mixture example 
from Lecture 1

• PSO with s=12 particles using 
psoptim (in R-package pso)

• Iteration 1 (black)

• Iteration 2 (red)

• Iteration 3 (green)

• Iteration 4 (blue)

• Iteration 5 (light blue)

• Iteration 20 (yellow)

• Iteration 40 (pink)
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• Bimodal normal mixture example from 
Lecture 1

• In some runs, the local maximum is 
identified as global maximum

• Risk to remain at a local maximum can 
be reduced if not all particles are 
informed about the global best solution  

• Option  control=list(p= )

controls proportion informed;
default 1-(11/12)^3=0.23. All informed (p=1)

23% informed (default)

5%

95%

1%

99%

Proportion of PSO-runs which
converge to local or global 
maximum, respectively
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• Example call:

• pso <- psoptim(par=rep(NA,2), 

fn=g, 

lower=-1, upper=3,

control=list(

fnscale=-1, 

maxit=1000, 

p=0.23, 

s=12

)).

• Some further options: c.p= 𝑐1 (cognitive comp.), c.g= 𝑐2 (social comp.), 
w= 𝑤 (inertia weight/exploitation const.), trace=1 (output of tracing info) 

Dimension of problem

Function to optimise

Search space 
(using vectors as limits enables different limits for the dimensions)

For maximisation

Iteration number; default can be 
too large in many situations

Proportion informed

Swarm size; default can be too low in 
some situations

Running time roughly
linear in each of these
two parameters



• PSO first suggested: 1995 by Kennedy and Eberhart

• Clerc (2016) distinguishes following (main) versions:

• 1998. A basic version

• SPSO 2007 (”Standard PSO”)

• SPSO 2011
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• Movement of particle i at iteration t+1:

• 𝒙𝑖
(𝑡+1)

= 𝒙𝑖
(𝑡)

+ 𝒗𝑖
(𝑡+1)

• 𝒗𝑖
(𝑡+1)

= w𝒗𝑖
(𝑡)

+ 𝑐1𝑅1
(𝑡+1)

(𝒑best, 𝑖
𝑡

− 𝒙𝑖
(𝑡)
) + 𝑐2𝑅2

(𝑡+1)
(𝒈best

𝑡
− 𝒙𝑖

(𝑡)
)

• In the first version from 1995, the inertia weight w was not included

• Particle swarm might “explode”

• Explosion can be prevented by introducing maximum velocity

• Alternatively, inertia weight w < 1 can prevent explosion

• Included in basic version from 1998
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• In first versions including 1998-basic version and SPSO 2007, random 
variables applied for each dimension separately:

• 𝒗𝑖
(𝑡+1)

= w𝒗𝑖
(𝑡)

+ 𝑐1𝑹1
(𝑡+1)

⨂ 𝒑best, 𝑖
𝑡

− 𝒙𝑖
𝑡

+ 𝑐2𝑹2
𝑡+1

⨂ 𝒈best
𝑡

− 𝒙𝑖
𝑡

where ⨂ is componentwise multiplication and 𝑹𝑘
(𝑡+1)

are vectors

• v[i] <- w*v[i] + c1*runif(p)*(pbest[i]-x[i]) +

c2*runif(p)*(gbest-x[i])

where v[i], x[i], pbest[i], gbest vectors for each particle i

• In SPSO 2011, same random variable used for all dimensions leading to 
movement in hyperspheres:

• 𝒗𝑖
(𝑡+1)

= w𝒗𝑖
(𝑡)

+ 𝑐1𝑅1
(𝑡+1)

(𝒑best, 𝑖
𝑡

− 𝒙𝑖
(𝑡)
) + 𝑐2𝑅2

(𝑡+1)
(𝒈best

𝑡
− 𝒙𝑖

(𝑡)
)

• v[i] <- w*v[i] + c1*runif(1)*(pbest[i]-x[i]) +

c2*runif(1)*(gbest-x[i])
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• Velocity of particle i at iteration t+1:

• 𝒗𝑖
(𝑡+1)

= w𝒗𝑖
(𝑡)

+ 𝑐1𝑅1
(𝑡+1)

(𝒑best, 𝑖
𝑡

− 𝒙𝑖
(𝑡)
) + 𝑐2𝑅2

(𝑡+1)
(𝒈best

𝑡
− 𝒙𝑖

(𝑡)
)

• In SPSO 2011, same random variable used for all dimensions leading 
to movement in hyperspheres

2023-04-04Advanced computational statistics L3 14

𝒙𝑖
(𝑡)

𝒈best
𝑡

𝒑best, 𝑖
𝑡

𝒙𝑖
(𝑡+1)

𝑤𝒗𝑖
(𝑡)

𝒙𝑖
(𝑡)

𝒈best
𝑡

𝒑best, 𝑖
𝑡

”center of gravidity”

𝒙𝑖
(𝑡)
+𝒑
best, 𝑖
𝑡

+𝒈
best
𝑡

3

𝒙𝑖
(𝑡+1)

𝑤𝒗𝑖
(𝑡)

See Clerc (2016)



• In version SPSO 2011, particles can move only in hyperspace spanned by 
starting particles

• Disadvantages: 

• If dimension of problem p is large in relation to swarm size s, e.g. p>s, 
optimisation done only in a subspace and high risk that optimum is missed

• Even if starting particles well distributed, they might become close to a 
hyperspace after some iterations

• Advantages: 

• Problem with dependence on coordinate system and with “biased search” 
is reduced; finds optima along axes and diagonal easier (Clerc, 2016)

• Linearly constrained problems can easily be handled (see L4)
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• Velocity of particle i at iteration t+1:

• 𝒗𝑖
(𝑡+1)

= w𝒗𝑖
(𝑡)

+ 𝑐1𝑅1
(𝑡+1)

(𝒑best, 𝑖
𝑡

− 𝒙𝑖
(𝑡)
) + 𝑐2𝑅2

(𝑡+1)
(𝒈best

𝑡
− 𝒙𝑖

(𝑡)
)

• Hyperparameters to choose: 𝑤, 𝑐1, 𝑐2

• Particles should not diverge

• “Stability analyses” had been done – these are simplified analytical computations, 
for example:

• Assume one dimensional case,

• Assume static 𝒑best, 𝑖
𝑡

= 𝒑best, 𝑖 and 𝒈best
𝑡

= 𝒈best (“stagnation assumption”)

• Ignore randomness (replace 𝑅𝑘
(𝑡+1)

by expected value ½)

• Derive requirements for 𝑤, 𝑐1, 𝑐2 such that 𝒙𝑖
(𝑡)

“converges” 
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• Velocity of particle i at iteration t+1:

• 𝒗𝑖
(𝑡+1)

= w𝒗𝑖
(𝑡)

+ 𝑐1𝑅1
(𝑡+1)

(𝒑best, 𝑖
𝑡

− 𝒙𝑖
(𝑡)
) + 𝑐2𝑅2

(𝑡+1)
(𝒈best

𝑡
− 𝒙𝑖

(𝑡)
)

• Standard choice in SPSO 2007, based originally on stability analyses from Clerc 
and Kennedy (2002):

• 𝑤 =
1

2 ln 2
= 0.721,

• 𝑐1 = 𝑐2 =
1

2
+ ln 2 = 1.193

• Since deterministic 𝑅𝑘
(𝑡+1)

=
1

2
and static 𝒑best, 𝒈best are used in stability analyses, 

no distinctive requirements for 𝑐1 and 𝑐2 are obtained and a default is often just 
𝑐1 = 𝑐2

• Write now 𝐶𝑘
(𝑡+1)

= 𝑐𝑘𝑅𝑘
(𝑡+1)

~𝑈𝑛𝑖𝑓 0, 𝑐𝑘 , 𝑘 = 1,2.

2023-04-04Advanced computational statistics L3 17



• Movement of specific particle at iteration t+1 (drop index i):

• 𝒙
(𝑡+1)

= 𝒙
(𝑡)

+ 𝒗
(𝑡+1)

• 𝒗
(𝑡+1)

= w𝒗
(𝑡)

+ 𝐶1
(𝑡+1)

(𝒑best
𝑡

− 𝒙
(𝑡)
) + 𝐶2

(𝑡+1)
(𝒈best

𝑡
− 𝒙

(𝑡)
)

• Focusing on particle locations, we can describe PSO as:

𝒙
(𝑡+1)

= 𝒙
(𝑡)

+ 𝒗
(𝑡+1)

= 𝒙
(𝑡)

+w𝒗
(𝑡)

+ 𝐶1
(𝑡+1)

𝒑best
𝑡

− 𝒙
𝑡

+ 𝐶2
𝑡+1

𝒈best
𝑡

− 𝒙
𝑡

= 𝒙
(𝑡)

+w 𝒙
𝑡
− 𝒙

𝑡−1
+ 𝐶1

(𝑡+1)
𝒑best

𝑡
− 𝒙

𝑡
+ 𝐶2

𝑡+1
𝒈best

𝑡
− 𝒙

𝑡

= 𝒙
𝑡

1 + 𝑤 − 𝐶1
𝑡+1

− 𝐶2
𝑡+1

−w𝒙
𝑡−1

+ 𝐶1
(𝑡+1)

𝒑best
𝑡

+ 𝐶2
𝑡+1

𝒈best
𝑡

• Therefore, a single equation is sufficient to describe the PSO iterations 

(𝒙(𝑡+1) depends then on both 𝒙(𝑡) and 𝒙(𝑡−1))
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𝒙
(𝑡)

=

𝒙
(𝑡−1)

+ 𝒗
(𝑡)



• Movement of specific particle at iteration t+1 with PSO:
𝒙(𝑡+1) = 𝒙(𝑡) 1 + 𝑤 − 𝐶1

𝑡+1
− 𝐶2

𝑡+1
−w𝒙(𝑡−1) + 𝐶1

(𝑡+1)
𝒑best

𝑡
+ 𝐶2

𝑡+1
𝒈best

𝑡

• Stability analyses were improved during the two previous decades, see 
Bonyadi and Michalewicz (2016) and Cleghorn and Engelbrecht (2018); 
definitions below follow the latter

• Order-1 stability

A sequence (𝒙(𝑡)) of p-dimensional random variables is called order-1 stable

if E 𝒙(𝑡) → 𝒙𝐸 for some 𝒙𝐸

• Order-2 stability

A sequence (𝒙(𝑡)) of p-dimensional random variables is called order-2 stable

if Var 𝒙(𝑡) → 𝒙𝑉 for some 𝒙𝑉
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• Movement of specific particle at iteration t+1 with PSO:
𝒙(𝑡+1) = 𝒙(𝑡) 1 + 𝑤 − 𝐶1

𝑡+1
− 𝐶2

𝑡+1
−w𝒙(𝑡−1) + 𝐶1

(𝑡+1)
𝒑best

𝑡
+ 𝐶2

𝑡+1
𝒈best

𝑡

• Bonyadi and Michalewicz (2016) interpret each of 𝐶1
(𝑡+1)

, 𝐶2
(𝑡+1)

,

𝒑best
𝑡

, 𝒈best
𝑡

as iid random variables

• This generalises assumptions that these values are fixed values; it weakens 
the stagnation assumption

• The iid assumption for 𝒑best
𝑡

, 𝑡 = 1,… and for 𝒈best
𝑡

, 𝑡 = 1,… still need to be 

seen as approximations  
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• We consider the one-dimensional case (p=1) now

• Movement of specific particle at iteration t+1 with PSO:
𝑥(𝑡+1) = 𝑥(𝑡) 1 + 𝑤 − 𝐶1

𝑡+1
− 𝐶2

𝑡+1
−w𝑥(𝑡−1) + 𝐶1

(𝑡+1)
𝑝best

𝑡
+ 𝐶2

𝑡+1
𝑔best

𝑡

• To write the iterations as a linear one-step relation, we write
𝒛(𝑡+1) = (𝑥(𝑡+1), 𝑥(𝑡))𝑇 , 𝑈 = 1 + 𝑤 − 𝐶1

𝑡+1
− 𝐶2

𝑡+1
,

and

𝒛(𝑡+1) =
𝑈 −𝑤
1 0

𝒛(𝑡) + 𝐶1
𝑡+1

𝑝best
𝑡

+ 𝐶2
𝑡+1

𝑔best
𝑡

0
• Since U and 𝒛(𝑡) are independent, we have

𝐸𝒛(𝑡+1) =
𝐸𝑈 −𝑤
1 0

𝐸𝒛(𝑡) +
𝐸 𝐶1

𝑡+1
𝑝best

𝑡
+ 𝐸 𝐶2

𝑡+1
𝑔best

𝑡

0
➢Sequence 𝐸𝒛(𝑡+1) is of form 𝐸𝒛(𝑡+1) = 𝑴𝐸𝒛(𝑡) + 𝒃
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• Sequence 𝐸𝒛(𝑡+1) is of form 𝐸𝒛(𝑡+1) = 𝑴𝐸𝒛(𝑡) + 𝒃

• Functional analysis says that 𝐸𝒛(𝑡) converges if the spectral radius of 
M is <1, see Bonyadi and Michalewicz (2016)’s Lemma 1

• Spectral radius ρ(𝑴) of 𝑴 ∈ ℝ𝑝×𝑝 is ρ 𝑴 = max |λ1|, … , λ𝑝 where 
λ𝑗 are the p (real or complex) eigenvalues ofM

• Recall that a non-symmetric ℝ𝑝×𝑝 matrix still has p eigenvalues as 
long as we allow for complex eigenvalues

• If λ = 𝑟 + 𝑐i then λ = 𝑟2 + 𝑐2; R can cope with this easily:

• > M <- matrix(c(-0.66, 1, -0.72, 0), ncol=2)

> eigen(M)$values

[1] -0.33+0.7817289i -0.33-0.7817289i

> max(abs(eigen(M)$values))  # spectral radius

[1] 0.8485281
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• We have 

𝐸𝒛(𝑡+1) =
𝐸𝑈 −𝑤
1 0

𝐸𝒛(𝑡) + 𝐸 𝐶1
𝑡+1

𝑝best
𝑡

+ 𝐸 𝐶2
𝑡+1

𝑔best
𝑡

0

• Compute spectral radius of 
𝐸𝑈 −𝑤
1 0

• Eigenvalues: 0 = det
λ − 𝐸𝑈 𝑤
−1 λ

= λ2 − λ𝐸𝑈 + 𝑤 ⇒ λ1,2 =
𝐸𝑈± 𝐸𝑈2−4𝑤

2

• 𝐸𝑈 = 1 + 𝑤 − 𝐸𝐶1
𝑡+1 − 𝐸𝐶2

𝑡+1 = 1 + 𝑤 − 𝑐1+𝑐2
2

• One can show:

ρ 𝑀 = max
𝐸𝑈+ 𝐸𝑈2−4𝑤

2
,
𝐸𝑈− 𝐸𝑈2−4𝑤

2
< 1 iff

−1 < 𝑤 < 1 and 0 <
𝑐1+𝑐2

2
< 2(𝑤 + 1)

• Assume 𝑐 = 𝑐1 = 𝑐2
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• Assume 𝑐 = 𝑐1 = 𝑐2. 𝐸𝑈 = 1 + 𝑤 − 𝑐

• One can show:

ρ 𝑀 = max
𝐸𝑈+ 𝐸𝑈2−4𝑤

2
,
𝐸𝑈− 𝐸𝑈2−4𝑤

2
< 1 iff

−1 < 𝑤 < 1 and 0 < 𝑐 < 2(𝑤 + 1)

• If it would be too difficult to show the above,
one could calculate the maximum eigenvalue 
for a grid of (w, c)-pairs and plot the cases 
when it is <1 (see R code on homepage)
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• To do stability analyses for order-2 stability (about the limit of the variance 
Var(𝒛(𝑡+1))), we can investigate 

𝒛(𝑡+1) = (𝑥 𝑡+1 , 𝑥 𝑡 , 𝑥 𝑡+1 2
, 𝑥 𝑡 2

, 𝑥(𝑡+1)𝑥(𝑡))𝑇

• The iterations can be written as system

𝐸𝒛 𝑡+1 =

𝐸𝑈 −𝑤 0 0 0
1 0 0 0 0

2𝐸[𝑈𝑃] −2𝑤𝐸𝑃 𝐸[𝑈2] 𝑤2 −2𝑤𝐸𝑈
0 0 1 0 0
𝐸𝑃 0 𝐸𝑈 0 −𝑤

𝐸𝒛 𝑡 + 𝒃

where 𝑃 = 𝐶1
(𝑡+1)

𝑝best
𝑡

+ 𝐶2
𝑡+1

𝑔best
𝑡
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• 𝑐 = 𝑐1 = 𝑐2

• −1 < 𝑤 < 1 and 
0 < 𝑐 < 2(𝑤 + 1)

• Sequence 𝒛(𝑡+1) is order-2 stable if:

−1 < 𝑤 < 1 and 

0 < 𝑐 <
12 𝑤2 − 1

5𝑤 − 7

• Default in R–package pso based on Clerc and Kennedy (2002):

𝑤 =
1

2 ln 2
= 0.721, 𝑐 = 𝑐1 = 𝑐2 =

1

2
+ ln 2 = 1.193
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• Based on stability analysis, choose 𝑤, 𝑐1, 𝑐2 respecting

−1 < 𝑤 < 1 and 0 < 𝑐1 + 𝑐2 <
24 𝑤2−1

5𝑤−7

• w>0 is in spirit of the algorithm’s idea

• Another hyperparameter to be chosen: swarm size 

• Swarm size motivated by empirical studies based on standard optimisation problems

• SPSO 2007: 10 + 2 𝑝

• Clerc (2012) shows with 12 standard optimisation problems: 

• usually swarm sizes larger than 10 + 2 𝑝 better, 

• dependence on dimension p is weak

• SPSO 2011: choice of user; suggested: 40
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• Particles ”inform” other particles about their results

• In the original PSO, each particle informs all others

• To ensure that not all particles are attracted prematurely by particle 
at a local optimum, do not inform all particles

• The structure how information flows is specified in ”topologies”

• Global top. (all inform all) Ring top. (all inform their 
two ”neighbours”) 
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• Exploration of the search space

• Exploitation around a promising position

• The topology: A sparce topology (e.g. ring top.) ensures more exploration 
compared to a dense one (e.g. global top.)

• Parameter w: Larger w leads to more exploration

• Parameters c1 and c2: Smaller c2 (and c1) lead to more exploration

• Clerc (2016; Section 8.6.4.1): The experimental evidence for such 
dependencies [on w, c1, c2] is weak
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AlphaOpt (2017). Introduction To Optimization: Gradient Free Algorithms (2/2) – Simulated Annealing, 
Nelder-Mead (0:15-1:35)
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https://www.youtube.com/watch?v=NI3WllrvWoc


• Start value x(0); Stage j=0,1,2,… has 𝑚𝑗 iterations; set j=0

• Given iteration x(t), generate x(t+1) as follows:

1. Sample a candidate x* from a proposal distribution p(·|x(t))

2. Compute ℎ 𝑥 𝑡 , 𝑥∗ = exp(
𝑔 𝑥∗ −𝑔 𝑥 𝑡

𝜏𝑗
)

3. Define next iteration x(t+1) according to

𝑥(𝑡+1) = ൝
𝑥∗, with probabilitymin{ℎ 𝑥(𝑡), 𝑥∗ , 1}

𝑥(𝑡), otherwise

4. Set t <- t+1 and repeat 1.-3. 𝑚𝑗 times 

5. Update 𝜏𝑗 = 𝛼(𝜏𝑗−1) and 𝑚𝑗 = 𝛽(𝑚𝑗−1); set j <- j+1; go to 1

𝜏𝑗 is temperature; function 𝛼 should slowly decrease it; function 𝛽 should be increasing
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𝑔 𝑥 𝑡 − 𝑔 𝑥∗

for 
minimisation



• Initially, also “bad” proposals are accepted

• With decreasing temperature, accept only improvements

• This helps to explore first and avoids convergence to a local maximum too 
early

• Algorithm which has therefore chances to find the global optimum in 
presence of multiple local optima

• method=“SANN” of R function optim is “a variant of simulated annealing” 
(documentation of optim)

• Initial temperature seems to be important choice (can be changed e.g. by 
control=list(temp=0.01); default 10 might be bad)
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• Step 1 in simulated annealing iteration rule:

1. Sample a candidate x* from a proposal distribution p(·|x(t))

• Proposal distribution could be uniform distribution on a neighbourhood of x(t); for 
a unidimensional optimisation problem: 
xs <- xt + runif(n=1, min=-1, max=1)

• Instead of Unif[-1,1], a distribution on a smaller or larger neighbourhood could be 
used

• But also, normal distribution 𝑁(0, 𝜎2) or other symmetric distribution around 0 
might be added to x(t) instead

• For multidimensional cases, one could use iid components, a uniform distribution on 
a ball around x(t) or a multivariate normal distribution with mean x(t)
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• For illustration, we consider
two-dimensional function 𝑔
according to contour lines in figure
(one global and one local maximum)
and fixed temperature 𝜏

• Proposal distribution 
p(x*|x(t)) = p(x(t)|x*) 

=
1

𝜋𝑟2
1{ 𝑥(𝑡) − 𝑥∗ < 𝑟}

for some constant r (here=1)
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• Proposal distribution 
p(x*|x(t)) = p(x(t)|x*)

=
1

𝜋𝑟2
1{ 𝑥(𝑡) − 𝑥∗ < 𝑟}

for some constant r (here=1) 

• Start here with x(0)=(1,-0.5)

• Randomize uniformly on unit
circle around x(0) (proposal 
distribution); result x*=(0.58,0.08)

• g(x*)=0.296 > g(x(0)) = 0.098; so this was 
an uphill step and is automatically 

accepted (ℎ 𝑥 𝑡 , 𝑥∗ > 1) 
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• x(0)=(1,-0.5)

• Uphill steps: x(1)=(0.58,0.08)

• x(2)=(-0.33,0.13)

• x(3)=(-0.23,0.05)

• Then downhill step proposed:
x*=(-0.32,0.4), ℎ 𝑥 𝑡 , 𝑥∗ = 0.774

• Random Unif(0,1) generated: 0.573 
and since this is smaller than h=0.774, 
x(4)=x*=(-0.32,0.4) is accepted

• Again downhill step proposed: x*=(-0.67,1.31), 
ℎ 𝑥 𝑡 , 𝑥∗ = 0.560; random Unif(0,1): 0.890 and rejection of x*

• x(5)=x(4)=(-0.32,0.4)



• Generic optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = min𝑔(𝒙)

• Now, we consider also optimisation problems which cannot exactly be 
formulated according to the generic one

• Especially, function 𝑔 might be defined on another space than ℝ𝑝

• Generalized optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: 𝕊 → ℝ function for some set 𝕊

• We search 𝒙∗ with 𝑔 𝒙∗ = min𝑔(𝒙)
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• Generalized optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: 𝕊 → ℝ function for some set 𝕊

• We search 𝒙∗ with 𝑔 𝒙∗ = min𝑔(𝒙)

• Multiple linear regression with q predictors

• Desired to choose best model based on criterion like AIC

• There are 2𝑞 possible models

• If q small, AIC of all models can be computed (exhaustive search); 
for q larger, this is impossible (e.g. q=50, 1ms to compute an AIC 
→ more than 35 000 years needed!)

• One model can be represented as element of 𝕊 = 0, 1 𝑞 (1=predictor 
included in model, 0 otherwise)
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• Generalized optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: 𝕊 → ℝ function for some set 𝕊

• We search 𝒙∗ with 𝑔 𝒙∗ = min𝑔(𝒙)

• Optimisation problem: Which model gives best AIC?

• Model 1: (1, 0, 0, 0, 1, 1, 0, 1, …)
Model 2: (1, 1, 1, 0, 1, 1, 0, 0, …)

• Which models are ”close” to each other? (Need metric on 𝕊 = 0, 1 𝑞) 
What is a neighbourhood of a model?

• Apply simulated annealing e.g. with neighbourhood being all models which differ 
by one predictor (for proposal dist.)

• Uniform distribution on neighbourhood can be used
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• Generalized optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: 𝕊 → ℝ function for some set 𝕊

• We search 𝒙∗ with 𝑔 𝒙∗ = min𝑔(𝒙)

• Arbitrary starting model generated (e.g. uniform distribution on 𝕊 = 0, 1 𝑞, 
xs <- rbinom(q, size=1, prob=0.5))

• See example in Givens and Hoeting (2013), Section 3.3, with 27 predictors
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• Regression model y=X β + ε (where ε has iid components)

• X design matrix (depends on choice of observational points) 

• Covariance matrix of Least Squares estimate ෡𝜷 is 

Cov ෡𝜷 = (𝑿𝑻𝑿)−𝟏· 𝑐𝑜𝑛𝑠𝑡

• Choose design of an experiment such that 𝑿𝑻𝑿 “large”

• D-optimality: 𝑔("design") = det(𝑿𝑻𝑿)

• We search design∗ with 𝑔 design∗ = max𝑔(design)
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• Regression model y=X β + ε, Cov ෡𝜷 = (𝑿𝑻𝑿)−𝟏· 𝑐𝑜𝑛𝑠𝑡

• We search design∗ with 𝑔 design∗ = max𝑔(design)

• Example: cubic regression, 𝑦 = 𝛽0 + 𝛽1𝑤 + 𝛽2𝑤
2 + 𝛽3𝑤

3 + 𝜀, 
w can be chosen in [-1, 1], but practical circumstances require here a distance 
between design points of 0.05

• Therefore, we allow design points {-1, -0.95, -0.9, …, 1} and at most one observation 
can be done at each point

• Each observation has a cost; and we want to minimise the penalized D-optimality 

#observations ∗ 0.2 − log det 𝑿𝑻𝑿

•

𝑿 =

1 𝑤1 𝑤1
2 𝑤1

3

1 𝑤2 𝑤2
2 𝑤2

3

… … … …
1 𝑤𝑛 𝑤𝑛

2 𝑤𝑛
3
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• Example: cubic regression, 𝑦 = 𝛽0 + 𝛽1𝑤 + 𝛽2𝑤
2 + 𝛽3𝑤

3 + 𝜀, 
w can be chosen in [-1, 1], but practical circumstances require here a distance 
between design points of 0.05

• Therefore, we allow design points {-1, -0.95, -0.9, …, 1} and at most one 
observation can be done at each point

• A design can be represented by a vector in 𝕊 = 0, 1 41 where 0 means that no 
observation is done at a design point and 1 means that one observation is 
made there

• How can a reasonable neighbourhood on 𝕊 look like here?
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• Start value x(0); Stage j=0,1,2,… has 𝑚𝑗 iterations; set j=0

• Given iteration x(t), generate x(t+1) as follows:

1. Sample a candidate x* from a proposal distribution p(·|x(t))

2. Compute ℎ 𝑥 𝑡 , 𝑥∗ = exp(
𝑔 𝑥∗ −𝑔 𝑥 𝑡

𝜏𝑗
)

3. Define next iteration x(t+1) according to

𝑥(𝑡+1) = ൝
𝑥∗, with probabilitymin{ℎ 𝑥(𝑡), 𝑥∗ , 1}

𝑥(𝑡), otherwise

4. Set t <- t+1 and repeat 1.-3. 𝑚𝑗 times 

5. Update 𝜏𝑗 = 𝛼(𝜏𝑗−1) and 𝑚𝑗 = 𝛽(𝑚𝑗−1); set j <- j+1; go to 1

𝜏𝑗 is temperature; function 𝛼 should slowly decrease it; function 𝛽 should be increasing
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𝑔 𝑥 𝑡 − 𝑔 𝑥∗

for 
minimisation



• Given a density 𝑓 𝑥 and aim is to generate a sample following 𝑓

• A starting value x(0) is generated from some starting distribution

• Given observation x(t), generate x(t+1) as follows:

1. Sample candidate x* from symmetric proposal dist. p(·|x(t))

2. Compute ratio 𝑅 𝑥 𝑡 , 𝑥∗ =
𝑓 𝑥∗

𝑓 𝑥 𝑡

3. Sample x(t+1) according to 

𝑥(𝑡+1) = ൝
𝑥∗, with probabilitymin{𝑅 𝑥(𝑡), 𝑥∗ , 1}

𝑥(𝑡), otherwise

4. If more observations needed, set t <- t+1; go to 1
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symmetric proposal:

𝑝 𝑥 𝑡 𝑥∗ = 𝑝 𝑥∗ 𝑥(𝑡)

(Metropolis et al., 1953)



• For fixed temperature 𝜏, simulated annealing algorithm is a Metropolis 
algorithm 

• Kirkpatrick et al. (1983) proposed name simulated annealing for using it as 
optimisation method

• ℎ 𝑥 𝑡 , 𝑥∗ = exp
𝑔 𝑥 𝑡 −𝑔 𝑥∗

𝜏𝑗
=

exp −
𝑔 𝑥∗

𝜏𝑗

exp −
𝑔 𝑥(𝑡)

𝜏𝑗

=
𝑓 𝑥∗

𝑓 𝑥(𝑡)
= 𝑅(𝑥(𝑡), 𝑥∗)

• Key ingredient of Metropolis and simulated annealing alg.: Markov chain 𝒙 𝒕

has limiting stationary distribution f ; for a proof see e.g. Koski (2009)

• Requirement for all: 𝑥 𝑡 irreducible and aperiodic chain
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𝜏
• Fixed temperature 𝜏: Markov chain 𝑥 𝑡 has limiting stationary 

distribution with density proportional to 𝑓 𝑥 = exp −
𝑔 𝑥

𝜏
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• Convergence proofs see generated sequence either as sequence of homogeneous 
Markov chains (one for each 𝜏) or as one inhomogeneous Markov chain

• For discrete 𝕊 = 𝑥1, 𝑥2, 𝑥3, … and 𝑔 having a finite set M of global minima, 
simulated annealing converges with probability 1/|M| to each of the M global 
minima (references for proofs in Givens and Hoeting, 2013); main idea:

• Stationary distribution proportional to: exp −
𝑔 𝑥

𝜏
or to exp −

𝑔 𝑥 −𝑔𝑚𝑖𝑛

𝜏
with 

𝑔𝑚𝑖𝑛 = min 𝑔 𝑥

• Therefore, if P is distribution according to stationary distribution, 

𝑃 𝑥𝑖 = exp −
𝑔 𝑥𝑖 −𝑔𝑚𝑖𝑛

𝜏
/{ 𝑀 + σ𝑥𝑗∉𝑀

exp −
𝑔 𝑥𝑗 −𝑔𝑚𝑖𝑛

𝜏
}
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→ 0→ 0 for 𝑥𝑖 ∉ 𝑀,
→ 1 for 𝑥𝑖 ∈ 𝑀

𝜏 → 0:

→
1

|𝑀|
(𝑥𝑖 ∈ 𝑀)



• To achieve convergence to a global minimum (possibly in presence of local 
minima) in practise, one needs:

• Run iterations for each fixed temperature long enough such that 
convergence to stationary distribution achieved

• Cool temperature slowly enough such that iterations have time to escape 
from local minima

• Example from Givens and Hoeting (2013; p.73):

• 5 stages with 60 iterations, then

• 5 stages with 120 iterations, then

• 5 stages with 220 iterations

• From one stage to the next, 𝜏 is decreased by 10%, 
tau <- 0.9*tau; final 𝜏 is 0.915 = 0.206*initial 𝜏
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+Very easy to implement

+Theoretical property is good: theoretically, we can guarantee convergence to a 
global optimum even in the presence of local optima

+Can even handle some non-standard optimisation problems

–In practice, convergence can be “maddeningly slow” 

–One needs to play around with cooling schedule to ensure convergence in 
practice

• We need to run the algorithm “long enough” at each temperature (to 
ensure stationary distribution)

• We need to cool the temperature slowly enough (to allow escaping from 
local optima)
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• We have several options for optimisation algorithms 

• Or – within one algorithm – we can choose some hyperparameters

• A possibility is to compare the options by running them on an example 
problem. Better, one might want to compare options for a set of easy and 
difficult optimisation problems

• For comparability, often ”standard optimisation problems” used; see e.g. 
Liang et al. (2013)

• Can be mathematical functions or statistical optimisation problems
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• After choosing some standard optimisation problems, one needs to define a 
success criterion (example in Clerk, 2016)

• Possibility: count runs of algorithm leading to a solution 𝑥𝑠 with 
𝑔 𝑥𝑠 < 𝑔 𝑥∗ + 𝛿; here 𝑥∗ true position of global minimum, and 𝛿 small 
(ideally 𝛿 < 𝑔 𝑥𝐿 − 𝑔(𝑥∗) for any local minimum 𝑥𝐿)

• If true success rate for an algorithm is p, we observe a Bin(1, 𝑝)-random 
variable in each run

➢Success rate has sd
𝑝 1−𝑝

𝑛
when doing n runs and you can do informed 

choice of n

• E.g. 𝑝 = 0.8, 𝑛 = 100 → sd = 0.04.
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• 𝒙 p−dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = max𝑔(𝒙)

• Nelder-Mead method is heuristic method for p-dimensional optimisation problem 
(default in R-function optim)

• Positive: 

+No computation of derivatives necessary

• Negative: 

• No theoretical guarantee for converge (counter examples exist)

• Might be slow

• Works often well, especially if p not too large
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• Idea: Work with simplex of p+1 points; i.e. for two-dimensional optimisation: work 
with triangle

• Aim that triangle includes maximum

• Choose arbitrary starting triangle

• Change vertices to ”move the triangle upwards”

• Two animations:
• https://www.youtube.com/watch?v=HUqLxHfxWqU
• https://www.youtube.com/watch?v=KEGSLQ6TlBM
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• Identify worst vertex xworst (g(xworst) minimal among all vertices) and 
compute average c of remaining vertices

• Let xbest be best and xbad be second worst vertex

• Rules for

• Reflection

• Expansion

• Outer contraction

• Inner contraction

• Shrinkage
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• Replace xworst with one of xI, xO, xR, xE (rule depends on values for 
g(xworst), g(xbad), g(xbest), g(xI), g(xO), g(xR), g(xE); see Givens and 
Hoeting, page 47-48) and create new simplex/triangle

• Or in specific cases: Shrink (keep xbest
and move all other vertices towards it)
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xbest

xbad



• Nelder-Mead algorithm is quite old, but still popular

• Research is ongoing e.g. about convergence results and variants of Nelder-Mead

• Note that Nelder-Mead can be used for dimension p=1 as well

• However, there exist better gradient free algorithms for p=1

• R-function optimize uses gradient free algorithm with convergence order 

q=1.324 (some requirements to function g necessary)
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Solution 𝑥 of 0 = 𝑥3 − 𝑥 − 1; (Brent, 1973)
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