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Course schedule

 Topic 1: Gradient based optimisation

 Topic 2: Stochastic gradient based optimisation
» Topic 3: Gradient free optimisation

» Topic 4: Optimisation with constraints

 Topic 5: EM algorithm and bootstrap

* Topic 6: Simulation of random variables

» Topic 7: Importance sampling

Course homepage:
http://www.adoptdesign.de/frankmillereu/adcompstat2023.html

Includes schedule, reading material, lecture notes, assignments
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EM algorithm
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EM algorithm

« EM = “Expectation-Maximization”
« Main application of this algorithm is in situations where not all data is
observed

 E: Expectation will be taken over all (unobserved) data which lead to the
observed data

« Algorithm is iterative:
each iteration has an E step, followed by an M step
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EM algorithm: Example 1

* Classical example: Genotype—phenotype
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« Peppered moths (see Ex.4.2 in GH, “bjorkmatare”)

Carbonaria

Source: Wikipedia; Pictures taken by Olaf Leillinger Licence: CC BB-SA 3.0

 Alleles: C, I, T; genotypes: CC,CI,CT; ILIT; TT

« Observed only phenotype: carbonaria; insularia; typica
Frequency observed: nes ng; nr

« Aim: estimate allele frequencies p., p;, py based on observed phenotype frequencies
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EM algorithm: Example 1

« Observed data: X = (N, N, N;)
« Aim: estimate p = (p., pp, P7)

« We can specify
* the expectations E[Y|X,p/ and
* the complete data likelihood f{(y|p)
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EM algorithm: Example 1

 According to biological theory:
P(a random moth is CC) = (p)?
P(a random moth is CI) = 2p, p,

. i‘he complete data likelihood fy(y|p) is multinomial:

N
FrOIp) = GRNee « peppNer s n (V)
CcC CI

« Complete data log likelihood:
log fy (y|p) = N¢c = log(pé) + Ng; * log(2pcp;) + -+

« Expectations E[Y|X,p] are for example:

2
Pc
E[N¢ccIN¢, Ny, Nr,p] = N¢
pé + 2pcp; + 2Pcpr
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EM algorithm

* Let X be observed data, Y complete data, @ unknown parameter-vector,
L(0|x) likelihood to maximize

e Iteration t (t=0,1,...): O
« Let Q (9|x; B(t)) =F {1og L(O|Y)|x; H(t)} be expectation of joint log likelihood
for complete data conditional on observed data X=x

« EM algorithm:
1. Initialize parameter-vector with a guess 6(?/

2. E step: Compute Q(80|x; 8V)
3. M step: Maximize Q(8|x; 8(9)) with respect to 0 -> t+1)
4. Back to E step if not stopping criterion met (e.g. if (¢+Y — V) small)
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EM algorithm: Example 2

Effect of a drug to be measured and n patients (randomly chosen out of a population
of patients) treated with the drug

X, 1=1,...,n, observed for each patient after drug-treatment

Known that population consists of two groups:
 One group responds well to the drug (i.e. larger X))
 Another group responds only barely (smaller X))

It is not known which patient belongs to which group

Observed: X;,
Unobserved: Z; = 1,if patler.lt i belongs to responder group
0, otherwise

Complete data: Y; = (X, Z))

We assume a mixture distribution for X: and want to estimate the parameters based
on the observed data

LINKOPING
II." UNIVERSITY



Advanced computational statistics L5 2023-05-02 10

Mixture distributions

 Generally, a density f,, of a finite mixture distribution is the sum of c
weighted densities f; of distributions:

fu(x) = Xizipifi(x; 6;)

where p; is a weight or mixing coefficient for the i™ term (p;>0; p,+...+p.=1),
and f;(x; 0;) is a probability density with parameter-vector

o If all ¢ distributions in the mixture are (univariate or multivariate) normal
distributions, we have a normal mixture

 In Lecture 1, we had an example of a bivariate normal mixture
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EM algorithm: Example 2

- In Example 2, assume that for both groups in the population (responders,
non-responders), X; follows normal distribution (unknown mean and
variance)

 Appropriate mixture? How many parameters has it?

» Appropriate mixture: f;,(x) = po(x; uy; 0q0) + (1 —p)e(x; uy; 0,) with
@ (x; u; o) being density of N(u,0) and p=mixing probability (probability to be
a responder)

* 5 parameters: p; lq; 01; Uy; 05
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EM algorithm: Example 2

* fu(x) =pe(x; ui;01) + (1 —p)o(x; uy; 03)
* parameters: p; Uq; oq; Uy; 0y

0.30

density
010 020

0.00

« Example here: p =0.4; u; = 0;0, = 0.7; u, = 2; 0, = 0.8
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EM algorithm for normal mixtures

* The estimated probability that observation j belongs to

2023-05-02
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group 1 is A .
. pip(xj; A Xy)

T:: = — ,
Y Dh=1 ﬁk‘ﬂ(xji ﬁkizk)

density
000 010 020 03073

where ¢(+; w; X) is density of (uni- or multivariate) normaldistr.
with mean vector p and variance matrix X (in the univariate
case, we use sd o; Instead)

« Maximizers for Q of the model parameters are

Pi = Lj=1Tij>
ﬁ. — 1 L TP Unidimensional case for sd
L pm&J=100 (instead of variance):
Ea _ 1 n A ~ ~ T ~ 1 n A A
Xy =5 2=y (g —H) (%~ 1) 6, =\/23i—nzj=17'[ij () —i)?

* Q=X X7 #i{log®@) + log o(xj; fis )}
« See Section 10.1 and 10.2 of Lindholm, Wahlstrom, Lindsten, Schon (2022)
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EM algorithm for normal mixtures

« EM algorithm:
1. Initialize parameter-vector with a guess
0 0) (0 0) «(0 0
0@ =, .,pO 4, ., 1 =0 3O
2. E step: Compute probabilities 7;; for individuals belonging to each group

3. M step: Maximize model parameters with formulae given before. Result

1S:
t+1 t+1 t+1 t+1 t+1 t+1
L+ = (pt+D | pHD) D) (1) S (e,

I /> Ul T bul
4. Back to E step if not stopping criterion met
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EM algorithm for normal mixtures

- Example for illustration: n=9 observations obtained. Ordered data:

0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0
« EM algorithm terminates after 8 iterations with:
@& 1w 6® 68y = (0.444,0.600,3.460,0.361, 0.532)

« Mean, sd, and 7, ; converge as follows:

Estimated mean Estimated standard deviation Estimated group membership

1.0

< -
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086

o

P{Xj belongs to group 1)
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ks
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oo 02 04 08 08 10 12 14
(]
]
o

0o

LINKOPING
UNIVERSITY

15




Advanced computational statistics L5 2023-05-02 16

EM algorithm for normal mixtures

- Example for illustration: n=9 observations obtained. Ordered data:
0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0

« EM algorithm terminates after 8 iterations with:
@@, 1® u® +® ) = (0.444,0.600,3.460,0.361,0.532)

 Over the iterations, Q converges as follows:
Likelihood Q
Q

= - -20.69286
-19.68185
?_“I . -17.56861
-14.35840
_ -13.19032
-12.03445
© -11.71313
-11.71272

w
—

o 5

lteration
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emalg <- function(dat, eps=0.000001) {

n <- length(dat)
pi <- rep(NA, n) #initialize vector for prob. to belong to group 1
P <- 0.5 #Starting value for mixing parameter
sigmal <- sd(dat)*2/3 #Starting value for variances
sigma2 <- sigmal
mul <- mean(dat)-sigmal/2 #Starting values for means
mu2 <- mean (dat)+sigmal/2
PV <- c(p, mul, mu2, sigmal, sigma2) #parameter vector
cc <- eps + 100 #initialize conv. crit. not to stop directly
while (cc>eps) {
pvl <- pv #Save previous parameter vector
### E step #i##
for (j in 1:n) {
pil <- p*dnorm(dat[j], mean=mul, sd=sigmal)
pi2 <- (1-p)*dnorm(dat[j], mean=mu2, sd=sigma2)
pil[j] <- pil/ (pil+pi2)
}
### M step #i#t#
P <- mean (pi)
mul <- sum(pi*dat)/ (p*n)
mu2 <- sum((1l-pi) *dat)/((1l-p) *n)
sigmal <- sqrt(sum(pi* (dat-mul) * (dat-mul)/ (p*n)))
sigma2 <- sqgrt(sum((l-pi)* (dat-mu2)* (dat-mu2)/((1-p)*n)))
#HH#H#
PV <- c(p, mul, mu2, sigmal, sigma2)
cc <- t(pv-pvl) %$*% (pv-pvl)
}
PV

}

data <- ¢(0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0)

2023-05-02
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Choice of starting values in example before

e We want to create automatically starting values
which are meaningful for the data

e My heuristic rule to choose them in the R-code
before:

— Take total data and compute overall mean and sd
— Overall sd is usually larger than sd’s for groups

— Therefore, I took 2/3* overall sd for the sd in
both groups

— For group means, starting values with 1 sd
difference chosen

LINKOPING
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EM algorithm: Example 3

e We consider now an unsupervised learning situation with multivariate data
coming from c¢ groups, but it is unknown from which group each observation
comes from (i.e., we have unlabeled data)

e Task: estimate to which group the observations belong to (i.e., classification)
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Excursus: K-means clustering algorithm

2023-05-02
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0.9 v
e Initialize with kK means R
0.8 Ty H}f N
(0) (0) s Pl h
I"l ) see ) ”k - *{?—-’-
0.7 4 AT i
. ++1 +
e Assignment step: ey,
Each observation is assigned to the  °¢; N
nearest mean p” 0s ]+ N
e Update step: . B
For each group i calculate the new Yo
0.3 +
mean "
e Iterate until groups do no longer 02
Cha nge 0.1 Iter:;:ﬂ:":":‘I #0 : : : : : : i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Annimation by: Chire
https://commons.wikimedia.org/wiki/File:K-means_ convergence.gif
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Excursus: K-means clustering algorithm

e The k-means algorithm creates clusters of similar size
e Sometimes more flexibility about cluster size desired

Different cluster analysis results on "mouse" data set:

Original Data k-Means Clustering EM Clustering
0.9 0.9 ° 0.9 °
» +
+._ x
08 {5;" -+§;+ xni*&xﬂé‘ 0.8
IR 0o o Tigh

ST . 2% TN S

+p 28 " 8 :g:.gl":“"’f'f"t
0.6 00 g%mg?é@ o 0.6

8 2 ’@g@: G, &

o TP ‘@ Qoo
0.5 @ o2 & 0.5

oo @ 2ol

o 2 G0 o

vt s} a o O
0.4 @ P o 0 %f 0.4

g E"%\Jﬂo o
0°8'8 Y8 °B
0.3 S Begs 0.3
0.2 0.2 0.2
+
0.1 0.1 0.1
0 0102 03 0.4 05 06 07 08 0.9 1 0 010203 04050607 0809 1 0 01 0203 04 0506 07 08 09 1

Figure by: Chire
https://upload.wikimedia.org/wikipedia/commons/0/09/ClusterAnalysis_ Mouse.svg

e Assuming a multivariate normal mixture enables using the EM algorithm
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Ways to choose starting values for the EM
algorithm for normal mixtures

e We can look at the data and guess the components in the mixture, their mean
and variance

e We can use a heuristic rule to determine starting values (like in Example 2)
e We can try a grid of starting parameter values

e We can first run a classification algorithm and use its result as starting values
for the EM algorithm
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Stopping criteria for optimisation algorithms

- Stopping criterion e.g. (¢+D — H(t))T(H(”l) —0W) <¢

 Other stopping criteria:

» Absolut stopping criterion, |8t — 9| < ¢,

- Relative stopping criterion, ||[@¢+D — 9W||/||0¢+V|| < ¢,
|9(t+1)_9(t)||
> [l ]|+e
 Different norms ||-|| can be used

- EM: instead of parameter vector, can look at log-likelihood and compare
it between iterations

|Q(8]x; 6D — Q(0]x; 819)|<e

* Modified rel. stopping crit. <€
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Bootstrap
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Why bootstrap?

« Assume you have independent samples of some population

 In statistics, we have methods to construct confidence intervals (CIs) for a
parameter 6 of interest (e.g., mean) based on distributional assumptions;
e.g., explicit formulas exist in case of normal distribution

« Sometimes not reasonable to make distributional assumptions

« With methods we will discuss here, we can obtain CIs without these
distributional assumption

» The available sample is our best information about the population — we
take the available sample as assumption for distribution of

population
« We pull ourselves up by our own capabilities — f l

like “pulling us up from the mud by our own bootstraps”

LINKOPING
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Example: precipitation data /L/\//Y\,“f
/ //

 Rainfall data from July in 233 years in Stockholm /

¢ What iS the mean and a 95%_CI for the mean? Precipitation in Stockholm, July, 1786-2018

« With standard formulae, we can calculate CI:
X =62.6mm,s = 35.0,n = 233,

sy = s/\n = 2.29,
to.025233 = 1.970

80

50

40

30

20

* 95%-CI-bounds: X + sz - t(.925 233
* 95%-CI is here: (58.1,67.1)

10

.

0 50 100 150 200

Monthly precipitation (mm)

e But: normal distribution assumed Data source: SMHI
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Example: precipitation data N
» This data is not normally distributed o /

« We want to make a more realistic assumption: erecipitation i Stockholm, Jul, 1786:2018
Actual sample distribution is best information
about distribution

80

50

 Idea: Given the 233 observations, sample
from them with replacement until you
have 233; calculate mean;
repeat this B=1000 times;
we have now 1000 means: the "middle 950” L
give a 95%-CI T a h

Monthly precipitation (mm)

40

30

20
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Example: precipitation data

» We illustrate the bootstrap using

only the last 6 years: 42.3, 44.1, 91.9, 47.6, 14.6, 5.9
e First resample: 5.9, 42.3, 5.9, 47.6, 91.9, 91.9
 Second resample: 42.3, 44.1, 42.3, 91.9, 42.3, 14.6
e Third resamp]e: 47.6, 44.1, 42.3, 14.6, 91.9, 14.6
.

+ 1000th resample: 47.6, 42.3, 91.9, 91.9, 5.9, 42.3

* The mean of each resample: 47.6, 46.3, 42.5, ..., 53.7

LINKOPING
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Example: precipitation data

* From the complete data, we made 1000 resamples;
the 1000 means of those are in the histogram

 The mean of the means: 62.6 mm

(bootstrap estimate is here the same as the usual estimate of the mean x)

* The middle 95% of the means are from 58.2 to 66.7
— this is our 95%-bootstrap-CI for the mean

Density

020
|

0.15
|

0.10
|

0.05
1

0.00
|
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Histogram of t
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Bootstrap idea

 Original data of size n is given, a certain property 6 (e.g. mean, variance, ...)
should be estimated by 8; its uncertainty should be quantified (e.g. CI for 6)

« Draw B resamples of size n of the original data with replacement

B=500 or 1000 has been used historically; B=10000 is nowadays often no problem

 Usually, there are repetitions in a resample

« Calculate the property of interest for each resample: 8;, i=1, ..., B;
the distribution of these B values ("bootstrap distribution”) can be used e.g.
to compute a CI for 6

« Advantage: no assumption for distribution of original data

« Which assumption is still made?

LINKOPING
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Bootstrap in R

R code using a loop for bootstrap replicates:

bo <- 1000 # bootstrap replicates

bs <- c() # to save the results for the means

for (1 in 1:bo) {
X <- sample(mrain, size=length(mrain), replace=TRUE)
bs <- c(bs, mean (x))

}

hist (bs)

bss <- sort (bs)

ci95 <- c(bss[round(bo*0.025)], bss[round(bo*0.975)1])

ci95

A run of this code gave (58.2, 66.7) as 95% bootstrap confidence interval

31
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Bootstrap in R with package boot

* As alternative, package boot with functions boot and boot.ci can be used
library (boot)

 Define first function of interest, e.g. the mean:
bootmean <- function(x, 1) mean(x[1])

* Generate B bootstrap resamples with function boot:
bss <- boot (mrain, bootmean, R=1000)

* You can plot a histogram of the bootstrap distribution:
hist (bss$St)

* A 95%-CI is between 2.5%- and 97.5%-percentile of bootstrap distribution:
boot.c1i (bss, type="perc”)

« The method used here for the CI-bounds is called “percentile method”

LINKOPING
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Parametric bootstrap

* When a parametric model for the data is known or
believed to represent the reality well, we can do
parametric bootstrap and sample according to the
assumed model

- Example: We assume that monthly precipitation in July .

follows a Gamma(3, 20)-distribution

« We sample 233 datapoints from Gamma(3, 20) and
calculate parameter of interest

Do this B times and derive e.g. a confidence interval

2023-05-02 33

Gamma(3, 20)-sample
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Example: precipitation data

« What is an estimated probability for “less than 10mm rain in next
July”? How good is our estimation? (= CI)

« Reasonable to calculate proportion of years with July-rain < 1omm.
Here: in 10 of 233 years = 0.043

Histogram of bsdry$t

 To calculate a 95%-CI, we generate a bootstrap distribution

(We resample B times and compute for each resample the proportion of years with July-rain < 10 mm)

20000
|

15000
1

« We use it’s 2.5%- and 97.5%-percentile: |
(0.0172, 0.0687)

Freguency
10000
|

5000

 Conclusion: The probability for < 10mm rain in July is

between 1.7% and 6.9%; estimate is 4.3% N Jﬁ

[ T T T T !
0.00 0.02 0.04 0.06 0.08 0.10

* (With normal assumption an estimate would be 6.6%. But a probability for < 0 mm rain would be 3.7%...
To use bootstrap gives here much better estimates than with normal assumption! You get easily a confidence interval as well.) bsdryst
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Bootstrap in R with package boot

 Define function of interest, here proportion below 10mm:
bootdry <- function(x, 1) mean((x[1]<10))

« Generate B=100000 bootstrap resamples:
bsdry <- boot (mrain, bootdry, R=100000)

* Plot a histogram of bootstrap distribution:
hist (bsdryS$St)

 Estimate proportion:
bootdry (mrain)

* A 95%-CI is between the 2.5%- and 97.5%-percentile of the bootstrap

distribution:
boot.ci (bsdry, type="perc”)

35
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Bootstrap for regression modelsys

« We can use the bootstrap method very flexibly,
e.g. in linear regression if we want a CI for
the slope or the residual standarddeviation¥ 1

« Example: The (toxic) influence of a fertilizer on
growth of garden cress was investigated in an
experiment (yield vs. amount of fertilizer, n=81)

200
|

0om O Eooo & 00 o

Yield (mg)
180
|
[ ]

 Estimated linear regression: .
yield = 203.3 — 71.3 - fertilizer
with residual standarddeviation 6 = 26.7

100
l

e CI fOI‘ SlOpe? CI fOI' o7 o_lo o_lz 0_|4 OﬁG OﬁB 1?0 12

Fertilizer (%)
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Bootstrap for regression models

250
\

« The dataset has n=81 pairs of fertilizer-yield-values

200
l

« The bootstrap resamples n pairs with replacement,
computes regression-slope and &

Yield (mg)
150
|

100
l

« This is done B times; R-code:

cressdat <- data.frame (fertilizer,yield) 00 02 04 06 08 10
cmslope <- function(dat, i) Fertilizer (%)
{
cm <- Im(yield~fertilizer, subset=i, data=dat)
coef (cm) [2]
}
cb <- boot (cressdat, cmslope, R=10000)
boot.ci(cb, type="perc")

« Result for CI-limits: -83.5, -58.7

LINKOPING
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250
1

Bootstrap for regression models

* A function for analysis of the residual & is:

Yield (mag)
150 200
| |

100
|

cmressd <- function(dat, i)

{

cm <- Im(yield~fertilizer, subset=i, data=dat)
summary (cm) $sigma

}

0.0

* Result for CI-limits: 22.62, 29.91 (percentile method)

« Median (50% percentile) of bootstrap distribution: 26.27 _

Freguen

« Residual 6 of data: 26.72

200 400 800 800 1000
l

* Percentile CI is constructed around 26.27 while it should
be constructed around 26.72 = the CI is biased

0
L
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Percentile method for Cls and alternatives

 The percentile method which we used so far can have drawbacks

e Bias: Estimate 6 might be very different from median of bootstrap
distribution, median(8;), but we would like a CI constructed around 6

» The bootstrap distribution might be heavily skewed implying that the se(8)
changes with the true 6

« The BC, method (bias correction — accelerated) improves the percentile
method by

» correcting for bias and
- adjusting the boundary alpha-levels to handle dependence of se(8) on 6

« If bootstrap distribution has not these issues, BC, = percentile
* For other methods (and BC,) see Givens and Hoeting (2013), Chapter 9.3.
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BC, method for bootstrap Cls

» Like percentile method, BC, uses quantiles from the bootstrap distribution, but
instead of /2 and 1 — a/2, it uses the two corrected quantiles

ZotzZg /2
d(zy +
( 0 1—a(zoiza/2)

« Bias: Define z, = ®~!(proportion of bootstrap values below estimate)

- Handling of skewness with acceleration factor a:
" ~ N3
Xi=1(80 — 0w)

. ~ \2)3/2
6{211(00 — )}
where é(i) is estimated leaving out observation i and é(.) 1S mean of é(,;)

a =

- This is a jackknife approach for estimating the change of se(d) when 6 changes
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Bagging (bootstrap aggregating]

» In the examples we discussed, we had an estimate 6 and got information
about its uncertainty with the bootstrap approach, e.g. constructing a CI

« In bagging, bootstrap is used to improve the estimate 9 itself by 2 0;

» For example, if 8 is based on model-fitting where very different models
could be chosen only if some observations are changed, the bootstrap
estimate is model averaging

« O might be based modelling with on neural networks or regression models
with data-dependent feature selection

« See Section 7.1-7.2 of Lindholm, Wahlstrom, Lindsten, Schon (2022)
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