Advanced computational statistics, lecture 5

Frank Miller, Department of Computer and Information Science, Linköping University
Department of Statistics; Stockholm University
May 2, 2023

Course schedule

- Topic 1: Gradient based optimisation
- Topic 2: Stochastic gradient based optimisation
- Topic 3: Gradient free optimisation
- Topic 4: Optimisation with constraints
- Topic 5: EM algorithm and bootstrap
- Topic 6: Simulation of random variables
- Topic 7: Importance sampling

Course homepage:
http://www.adoptdesign.de/frankmillereu/adcompstat2023.html
Includes schedule, reading material, lecture notes, assignments

EM algorithm

EM algorithm

- $\mathrm{EM}=$ "Expectation-Maximization"
- Main application of this algorithm is in situations where not all data is observed
- E: Expectation will be taken over all (unobserved) data which lead to the observed data
- Algorithm is iterative:
each iteration has an E step, followed by an M step

EM algorithm: Example 1

- Classical example: Genotype-phenotype
- Peppered moths (see Ex.4.2 in GH, "björkmätare")

Source: Wikipedia; Pictures taken by Olaf Leillinger Licence: CC BB-SA 3.0

- Alleles: C, I, T; genotypes: CC,CI,CT; II,IT; TT
- Observed only phenotype: carbonaria; insularia; typica Frequency observed:
$n_{C} ; \quad n_{I} ;$
n_{T}
- Aim: estimate allele frequencies p_{C}, p_{I}, p_{T} based on observed phenotype frequencies

EM algorithm: Example 1

- Observed data: $\boldsymbol{X}=\left(N_{C}, N_{T}, N_{T}\right)$
- Complete data: $\boldsymbol{Y}=\left(N_{C C}, N_{C I}, N_{C T}, N_{I I}, N_{I T}, N_{T T}\right)$
- Aim: estimate $\boldsymbol{p}=\left(p_{C}, p_{I}, p_{T}\right)$
- We can specify
- the expectations $E[\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{p}]$ and
- the complete data likelihood $f_{\mathbf{Y}}(\boldsymbol{y} \mid \boldsymbol{p})$

EM algorithm: Example 1

- According to biological theory:
$\mathrm{P}(\mathrm{a}$ random moth is CC$)=\left(p_{C}\right)^{2}$
$\mathrm{P}($ a random moth is CI$)=2 p_{C} p_{I}$
- The complete data likelihood $f_{\mathbf{Y}}(\boldsymbol{y} \mid \boldsymbol{p})$ is multinomial:

$$
f_{Y}(\boldsymbol{y} \mid \boldsymbol{p})=\left(p_{C}^{2}\right)^{N_{C C}} *\left(2 p_{C} p_{I}\right)^{N_{C I}} * \cdots *\left(\begin{array}{ccc}
& N & \\
N_{C C} & N_{C I} & \ldots
\end{array}\right)
$$

- Complete data log likelihood:

$$
\log f_{Y}(\boldsymbol{y} \mid \boldsymbol{p})=N_{C C} * \log \left(p_{C}^{2}\right)+N_{C I} * \log \left(2 p_{C} p_{I}\right)+\cdots
$$

- Expectations $E[\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{p}]$ are for example:

$$
E\left[N_{C C} \mid N_{C}, N_{I}, N_{T}, p\right]=N_{C} \frac{p_{C}^{2}}{p_{C}^{2}+2 p_{C} p_{I}+2 P_{C} p_{T}}
$$

EM algorithm

- Let \boldsymbol{X} be observed data, \boldsymbol{Y} complete data, $\boldsymbol{\theta}$ unknown parameter-vector, $L(\boldsymbol{\theta} \mid \boldsymbol{x})$ likelihood to maximize
- Iteration $t(t=0,1, \ldots): \boldsymbol{\theta}^{(t)}$
- Let $Q\left(\boldsymbol{\theta} \mid \boldsymbol{x} ; \boldsymbol{\theta}^{(t)}\right)=E\left\{\log L(\boldsymbol{\theta} \mid Y) \mid \boldsymbol{x} ; \boldsymbol{\theta}^{(t)}\right\}$ be expectation of joint \log likelihood for complete data conditional on observed data $\boldsymbol{X}=\boldsymbol{x}$
- EM algorithm:

1. Initialize parameter-vector with a guess $\boldsymbol{\theta}^{(0)}$
2. E step: Compute $Q\left(\boldsymbol{\theta} \mid \boldsymbol{x} ; \boldsymbol{\theta}^{(t)}\right)$
3. M step: Maximize $Q\left(\boldsymbol{\theta} \mid \boldsymbol{x} ; \boldsymbol{\theta}^{(t)}\right)$ with respect to $\boldsymbol{\theta}$-> $\boldsymbol{\theta}^{(t+1)}$
4. Back to E step if not stopping criterion met (e.g. if $\left(\boldsymbol{\theta}^{(t+1)}-\boldsymbol{\theta}^{(t)}\right)$ small)

EM algorithm: Example 2

- Effect of a drug to be measured and n patients (randomly chosen out of a population of patients) treated with the drug
- $X_{i}, i=1, \ldots, n$, observed for each patient after drug-treatment
- Known that population consists of two groups:
- One group responds well to the drug (i.e. larger X_{i})
- Another group responds only barely (smaller X_{i})
- It is not known which patient belongs to which group

```
Observed: \(X_{i}\),
Unobserved: \(Z_{i}=\left\{\begin{array}{l}1, \text { if patient } i \text { belongs to responder group } \\ 0, \text { otherwise }\end{array}\right.\)
Complete data: \(Y_{i}=\left(X_{i}, Z_{i}\right)\)
```

- We assume a mixture distribution for X_{i} and want to estimate the parameters based on the observed data

Mixture distributions

- Generally, a density f_{M} of a finite mixture distribution is the sum of c weighted densities f_{i} of distributions:

$$
f_{M}(\boldsymbol{x})=\sum_{i=1}^{c} p_{i} f_{i}\left(\boldsymbol{x} ; \boldsymbol{\theta}_{i}\right)
$$

where p_{i} is a weight or mixing coefficient for the $i^{\text {th }}$ term $\left(p_{i}>O ; p_{1}+\ldots+p_{c}=1\right)$, and $f_{i}\left(\boldsymbol{x} ; \boldsymbol{\theta}_{i}\right)$ is a probability density with parameter-vector $\boldsymbol{\theta}_{i}$

- If all c distributions in the mixture are (univariate or multivariate) normal distributions, we have a normal mixture
- In Lecture 1, we had an example of a bivariate normal mixture

EM algorithm: Example 2

- In Example 2, assume that for both groups in the population (responders, non-responders), X_{i} follows normal distribution (unknown mean and variance)
- Appropriate mixture? How many parameters has it?
- Appropriate mixture: $f_{M}(x)=p \varphi\left(x ; \mu_{1} ; \sigma_{1}\right)+(1-p) \varphi\left(x ; \mu_{2} ; \sigma_{2}\right)$ with $\varphi(x ; \mu ; \sigma)$ being density of $\mathrm{N}(\mu, \sigma)$ and $p=$ mixing probability (probability to be a responder)
- 5 parameters: $p ; \mu_{1} ; \sigma_{1} ; \mu_{2} ; \sigma_{2}$

EM algorithm: Example 2

- $f_{M}(x)=p \varphi\left(x ; \mu_{1} ; \sigma_{1}\right)+(1-p) \varphi\left(x ; \mu_{2} ; \sigma_{2}\right)$
- parameters: $p ; \mu_{1} ; \sigma_{1} ; \mu_{2} ; \sigma_{2}$

- Example here: $p=0.4 ; \mu_{1}=0 ; \sigma_{1}=0.7 ; \mu_{2}=2 ; \sigma_{2}=0.8$

EM algorithm for normal mixtures

- The estimated probability that observation j belongs to group i is

$$
\hat{\pi}_{i j}=\frac{\hat{p}_{i} \varphi\left(\boldsymbol{x}_{\boldsymbol{j}} ; \widehat{\boldsymbol{\mu}}_{i} ; \widehat{\boldsymbol{\Sigma}}_{i}\right)}{\sum_{k=1}^{c} \hat{p}_{k} \varphi\left(\boldsymbol{x}_{j} ; \widehat{\boldsymbol{\mu}}_{k} ; \widehat{\boldsymbol{\Sigma}}_{k}\right)},
$$

where $\varphi(\because ; \boldsymbol{\mu} ; \boldsymbol{\Sigma})$ is density of (uni- or multivariate) normaldistr. with mean vector $\boldsymbol{\mu}$ and variance matrix $\boldsymbol{\Sigma}$ (in the univariate
 case, we use sd σ_{i} instead)

- Maximizers for Q of the model parameters are

$$
\begin{aligned}
& \hat{p}_{i}=\frac{1}{n} \sum_{j=1}^{n} \hat{\pi}_{i j}, \\
& \widehat{\boldsymbol{\mu}}_{i}=\frac{1}{\hat{p}_{i} n} \sum_{j=1}^{n} \hat{\pi}_{i j} \cdot \boldsymbol{x}_{j}, \\
& \widehat{\boldsymbol{\Sigma}}_{i}=\frac{1}{\hat{p}_{i} n} \sum_{j=1}^{n} \hat{\pi}_{i j} \cdot\left(\boldsymbol{x}_{j}-\widehat{\boldsymbol{\mu}}_{i}\right)\left(\boldsymbol{x}_{j}-\widehat{\boldsymbol{\mu}}_{i}\right)^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Unidimensional case for sd } \\
\text { (instead of variance): } \\
\widehat{\sigma}_{i}=\sqrt{\frac{1}{\hat{p}_{i} n} \sum_{j=1}^{n} \hat{\pi}_{i j} \cdot\left(x_{j}-\hat{\mu}_{i}\right)^{2}}
\end{array}
\end{aligned}
$$

- $\mathrm{Q}=\sum_{i=1}^{c} \sum_{j=1}^{n} \hat{\pi}_{i j}\left\{\log \left(\hat{p}_{i}\right)+\log \varphi\left(\boldsymbol{x}_{\boldsymbol{j}} ; \widehat{\boldsymbol{\mu}}_{i} ; \widehat{\boldsymbol{\Sigma}}_{i}\right)\right\}$
- See Section 10.1 and 10.2 of Lindholm, Wahlström, Lindsten, Schön (2022)

EM algorithm for normal mixtures

- EM algorithm:

1. Initialize parameter-vector with a guess

$$
\boldsymbol{\theta}^{(0)}=\left(p_{1}^{(0)}, \ldots, p_{c}^{(0)}, \boldsymbol{\mu}_{1}^{(0)}, \ldots, \boldsymbol{\mu}_{c}^{(0)}, \mathbf{\Sigma}_{1}^{(0)}, \ldots, \mathbf{\Sigma}_{c}^{(0)}\right)
$$

2. E step: Compute probabilities $\hat{\pi}_{i j}$ for individuals belonging to each group
3. M step: Maximize model parameters with formulae given before. Result is:

$$
\boldsymbol{\theta}^{(t+1)}=\left(p_{1}^{(t+1)}, \ldots, p_{c}^{(t+1)}, \boldsymbol{\mu}_{1}^{(t+1)}, \ldots, \boldsymbol{\mu}_{c}^{(t+1)}, \mathbf{\Sigma}_{1}^{(t+1)}, \ldots, \mathbf{\Sigma}_{c}^{(t+1)}\right)
$$

4. Back to E step if not stopping criterion met

EM algorithm for normal mixtures

- Example for illustration: $\mathrm{n}=9$ observations obtained. Ordered data:

$$
0.1,0.5,0.7,1.1,2.5,3.4,3.5,3.9,4.0
$$

- EM algorithm terminates after 8 iterations with:

$$
\left(p_{1}^{(8)}, \mu_{1}^{(8)}, \mu_{2}^{(8)}, \sigma_{1}^{(8)}, \sigma_{2}^{(8)}\right)=(0.444,0.600,3.460,0.361,0.532)
$$

- Mean, sd, and $\hat{E s s i m p e e d}_{1 j}$ converge as follows:

EM algorithm for normal mixtures

- Example for illustration: $\mathrm{n}=9$ observations obtained. Ordered data:
$0.1,0.5,0.7,1.1,2.5,3.4,3.5,3.9,4.0$
- EM algorithm terminates after 8 iterations with:

$$
\left(p_{1}^{(8)}, \mu_{1}^{(8)}, \mu_{2}^{(8)}, \sigma_{1}^{(8)}, \sigma_{2}^{(8)}\right)=(0.444,0.600,3.460,0.361,0.532)
$$

- Over the iterations, Q converges as follows:

Likelihood Q

$$
\begin{gathered}
Q \\
-20.69286 \\
-19.68185 \\
-17.56861 \\
-14.35840 \\
-13.19032 \\
-12.03445 \\
-11.71313 \\
-11.71272
\end{gathered}
$$

```
emalg <- function(dat, eps=0.000001){
    n <- length(dat)
    pi <- rep(NA, n) #initialize vector for prob. to belong to group 1
    p <- 0.5 #Starting value for mixing parameter
    sigma1 <- sd(dat)*2/3 #Starting value for variances
    sigma2 <- sigma1
    mu1 <- mean(dat)-sigma1/2 #Starting values for means
    mu2 <- mean(dat)+sigma1/2
    pv <- c(p, mu1, mu2, sigma1, sigma2) #parameter vector
    cc <- eps + 100 #initialize conv. crit. not to stop directly
    while (cc>eps){
        pv1 <- pv #Save previous parameter vector
        ### E step ###
        for (j in 1:n){
            pi1 <- p*dnorm(dat[j], mean=mul, sd=sigma1)
            pi2 <- (1-p)*dnorm(dat[j], mean=mu2, sd=sigma2)
            pi[j] <- pi1/(pi1+pi2)
        }
        ### M step ###
        p <- mean(pi)
        mu1 <- sum(pi*dat)/(p*n)
        mu2 <- sum((1-pi)*dat)/((1-p)*n)
        sigma1 <- sqrt(sum(pi*(dat-mu1)*(dat-mu1)/(p*n)))
        sigma2 <- sqrt(sum((1-pi)*(dat-mu2)*(dat-mu2)/((1-p)*n)))
        ######
        pv <- c(p, mu1, mu2, sigma1, sigma2)
        cc <- t(pv-pv1)%*%(pv-pv1)
    }
    pv
}
data <- c(0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0)
emalg(data)
```

LINKÖPING
UNIVERSITY

Choice of starting values in example before

- We want to create automatically starting values which are meaningful for the data
- My heuristic rule to choose them in the R-code before:

- Take total data and compute overall mean and sd
- Overall sd is usually larger than sd's for groups
- Therefore, I took 2/3* overall sd for the sd in both groups
- For group means, starting values with 1 sd difference chosen

EM algorithm: Example 3

- We consider now an unsupervised learning situation with multivariate data coming from c groups, but it is unknown from which group each observation comes from (i.e., we have unlabeled data)
- Task: estimate to which group the observations belong to (i.e., classification)

Excursus: K-means clustering algorithm

- Initialize with k means

$$
\boldsymbol{\mu}_{1}^{(0)}, \cdots, \boldsymbol{\mu}_{k}^{(0)}
$$

- Assignment step:

Each observation is assigned to the nearest mean $\boldsymbol{\mu}_{i}^{(t)}$

- Update step:

For each group i calculate the new mean $\boldsymbol{\mu}_{i}^{(t)}$

- Iterate until groups do no longer change

Excursus: K-means clustering algorithm

- The k-means algorithm creates clusters of similar size
- Sometimes more flexibility about cluster size desired

- Assuming a multivariate normal mixture enables using the EM algorithm

Ways to choose starting values for the EM algorithm for normal mixtures

- We can look at the data and guess the components in the mixture, their mean and variance
- We can use a heuristic rule to determine starting values (like in Example 2)
- We can try a grid of starting parameter values
- We can first run a classification algorithm and use its result as starting values for the EM algorithm

Stopping criteria for optimisation algorithms

- Stopping criterion e.g. $\left(\boldsymbol{\theta}^{(t+1)}-\boldsymbol{\theta}^{(t)}\right)^{T}\left(\boldsymbol{\theta}^{(t+1)}-\boldsymbol{\theta}^{(t)}\right)<\epsilon$
- Other stopping criteria:
- Absolut stopping criterion, $\left\|\boldsymbol{\theta}^{(t+1)}-\boldsymbol{\theta}^{(t)}\right\|<\epsilon$,
- Relative stopping criterion, $\left\|\boldsymbol{\theta}^{(t+1)}-\boldsymbol{\theta}^{(t)}\right\| /\left\|\boldsymbol{\theta}^{(t+1)}\right\|<\epsilon$,
- Modified rel. stopping crit., $\frac{\left\|\boldsymbol{\theta}^{(t+1)}-\boldsymbol{\theta}^{(t)}\right\|}{\left\|\boldsymbol{\theta}^{(t+1)}\right\|+\varepsilon}<\varepsilon$
- Different norms $\|\cdot\|$ can be used
- EM: instead of parameter vector, can look at log-likelihood and compare it between iterations

$$
\left|Q\left(\boldsymbol{\theta} \mid \boldsymbol{x} ; \boldsymbol{\theta}^{(t+1)}\right)-Q\left(\boldsymbol{\theta} \mid \boldsymbol{x} ; \boldsymbol{\theta}^{(t)}\right)\right|<\varepsilon
$$

Bootstrap

Why bootstrap?

- Assume you have independent samples of some population
- In statistics, we have methods to construct confidence intervals (CIs) for a parameter θ of interest (e.g., mean) based on distributional assumptions; e.g., explicit formulas exist in case of normal distribution
- Sometimes not reasonable to make distributional assumptions
- With methods we will discuss here, we can obtain CIs without these distributional assumption
- The available sample is our best information about the population - we take the available sample as assumption for distribution of population
- We pull ourselves up by our own capabilities like "pulling us up from the mud by our own bootstraps"

Example: precipitation data

- Rainfall data from July in 233 years in Stockholm
- What is the mean and a $95 \%-\mathrm{CI}$ for the mean?
- With standard formulae, we can calculate CI:

$$
\begin{aligned}
& \bar{x}=62.6 \mathrm{~mm}, s=35.0, n=233 \\
& s_{\bar{x}}=s / \sqrt{n}=2.29 \\
& t_{0.025,233}=1.970
\end{aligned}
$$

- 95\%-CI-bounds: $\bar{x} \pm s_{\bar{x}} \cdot t_{0.025,233}$
- $95 \%-\mathrm{CI}$ is here: $(58.1,67.1)$

- But: normal distribution assumed

Example: precipitation data

- This data is not normally distributed
- We want to make a more realistic assumption: Actual sample distribution is best information about distribution
- Idea: Given the 233 observations, sample from them with replacement until you have 233; calculate mean; repeat this $\mathrm{B}=1000$ times; we have now 1000 means: the "middle 950" give a 95%-CI

Precipitation in Stockholm, July, 1786-2018

Example: precipitation data

- We illustrate the bootstrap using only the last 6 years:
- First resample:
- Second resample:
- Third resample:
$42.3,44.1,91.9,47.6,14.6,5.9$
$5.9,42.3,5.9,47.6,91.9,91.9$
$42.3,44.1,42.3,91.9,42.3,14.6$
$47.6,44.1,42.3,14.6,91.9,14.6$
- 1000th resample:
- The mean of each resample: $47.6,46.3,42.5, \ldots, 53.7$

Example: precipitation data

- From the complete data, we made 1000 resamples; the 1000 means of those are in the histogram
- The mean of the means: 62.6 mm
(bootstrap estimate is here the same as the usual estimate of the mean \bar{x})
- The middle 95% of the means are from 58.2 to 66.7 - this is our 95%-bootstrap-CI for the mean

Histogram of t

Bootstrap idea

- Original data of size n is given, a certain property θ (e.g. mean, variance, ...) should be estimated by $\hat{\theta}$; its uncertainty should be quantified (e.g. CI for θ)
- Draw B resamples of size n of the original data with replacement $\mathrm{B}=500$ or 1000 has been used historically; $\mathrm{B}=10000$ is nowadays often no problem
- Usually, there are repetitions in a resample
- Calculate the property of interest for each resample: $\hat{\theta}_{i}, \mathrm{i}=1, \ldots, \mathrm{~B}$; the distribution of these B values ("bootstrap distribution") can be used e.g. to compute a CI for θ
- Advantage: no assumption for distribution of original data
- Which assumption is still made?

Bootstrap in R

- R code using a loop for bootstrap replicates:

```
bo <- 1000 # bootstrap replicates
bs <- c() # to save the results for the means
for (l in 1:bo){
    x <- sample(mrain, size=length(mrain), replace=TRUE)
    bs <- c(bs, mean(x))
}
hist(bs)
bss <- sort(bs)
ci95 <- c(bss[round (bo*0.025)], bss[round(bo*0.975)])
ci95
- A run of this code gave (58.2, 66.7) as \(95 \%\) bootstrap confidence interval
```


Bootstrap in R with package boot

- As alternative, package boot with functions boot and boot.ci can be used library (boot)
- Define first function of interest, e.g. the mean:
bootmean <- function(x, i) mean(x[i])
- Generate B bootstrap resamples with function boot:
bss <- boot (mrain, bootmean, R=1000)
- You can plot a histogram of the bootstrap distribution: hist(bss\$t)
- A 95%-CI is between 2.5% - and 97.5%-percentile of bootstrap distribution: boot.ci(bss, type="perc")
- The method used here for the CI-bounds is called "percentile method"

Parametric bootstrap

- When a parametric model for the data is known or believed to represent the reality well, we can do parametric bootstrap and sample according to the assumed model
- Example: We assume that monthly precipitation in July follows a Gamma(3, 20)-distribution
- We sample 233 datapoints from $\operatorname{Gamma}(3,20)$ and calculate parameter of interest
- Do this B times and derive e.g. a confidence interval

Example: precipitation data

- What is an estimated probability for "less than 10 mm rain in next July"? How good is our estimation? $(\rightarrow$ CI)
- Reasonable to calculate proportion of years with July-rain < 10 mm . Here: in 10 of 233 years $=0.043$
- To calculate a $95 \%-\mathrm{CI}$, we generate a bootstrap distribution (We resample B times and compute for each resample the proportion of years with July-rain < 10 mm)
- We use it's 2.5% - and 97.5\%-percentile: (0.0172, 0.0687)
- Conclusion: The probability for < 10 mm rain in July is between 1.7% and 6.9%; estimate is 4.3%
- (With normal assumption an estimate would be 6.6%. But a probability for $<0 \mathrm{~mm}$ rain would be $3.7 \% \ldots$

[^0]bsdrySt

Bootstrap in R with package boot

- Define function of interest, here proportion below 10mm: bootdry <- function(x, i) mean ((x[i]<10))
- Generate $\mathrm{B}=100000$ bootstrap resamples:
bsdry <- boot(mrain, bootdry, $R=100000$)
- Plot a histogram of bootstrap distribution:
hist (bsdry\$t)
- Estimate proportion:
bootdry (mrain)
- A 95\%-CI is between the 2.5% - and 97.5%-percentile of the bootstrap distribution:
boot.ci(bsdry, type="perc")

Bootstrap for regression models

- We can use the bootstrap method very flexibly, e.g. in linear regression if we want a CI for the slope or the residual standarddeviation $\stackrel{\circ}{\circ}$
- Example: The (toxic) influence of a fertilizer on growth of garden cress was investigated in an experiment (yield vs. amount of fertilizer, $\mathrm{n}=81$)
- Estimated linear regression:

$$
\text { yield }=203.3-71.3 \cdot \text { fertilizer }
$$

with residual standarddeviation $\hat{\sigma}=26.7$

- CI for slope? CI for $\hat{\sigma}$?

Bootstrap for regression models

- The dataset has $\mathrm{n}=81$ pairs of fertilizer-yield-values
- The bootstrap resamples n pairs with replacement, computes regression-slope and $\hat{\sigma}$
- This is done B times; R-code:

```
cressdat <- data.frame(fertilizer,yield)
cmslope <- function(dat, i)
{
    cm <- lm(yield~fertilizer, subset=i, data=dat)
    coef(cm)[2]
}
cb <- boot(cressdat, cmslope, R=10000)
boot.ci(cb, type="perc")
```

- Result for CI-limits: -83.5, -58.7

Bootstrap for regression models

- A function for analysis of the residual $\hat{\sigma}$ is:

```
cmressd <- function(dat, i)
{
    cm <- lm(yield~fertilizer, subset=i, data=dat)
    summary(cm)$sigma
}
```


Histogram of cb\$t

- Result for CI-limits: 22.62, 29.91 (percentile method)
- Median (50\% percentile) of bootstrap distribution: 26.27
- Residual $\hat{\sigma}$ of data: 26.72
- Percentile CI is constructed around 26.27 while it should be constructed around $26.72 \boldsymbol{\rightarrow}$ the CI is biased

Percentile method for Cls and alternatives

- The percentile method which we used so far can have drawbacks
- Bias: Estimate $\hat{\theta}$ might be very different from median of bootstrap distribution, median $\left(\hat{\theta}_{i}\right)$, but we would like a CI constructed around $\hat{\theta}$
- The bootstrap distribution might be heavily skewed implying that the $\operatorname{se}(\hat{\theta})$ changes with the true θ
- The BC_{a} method (bias correction - accelerated) improves the percentile method by
- correcting for bias and
- adjusting the boundary alpha-levels to handle dependence of $\operatorname{se}(\hat{\theta})$ on θ
- If bootstrap distribution has not these issues, $\mathrm{BC}_{\mathrm{a}}=$ percentile
- For other methods (and BC_{a}) see Givens and Hoeting (2013), Chapter 9.3.

BC_{a} method for bootstrap Cls

- Like percentile method, BC_{a} uses quantiles from the bootstrap distribution, but instead of $\alpha / 2$ and $1-\alpha / 2$, it uses the two corrected quantiles
$\Phi\left(z_{0}+\frac{z_{0} \pm z_{\alpha / 2}}{1-a\left(z_{0} \pm z_{\alpha / 2}\right)}\right)$
- Bias: Define $z_{0}=\Phi^{-1}$ (proportion of bootstrap values below estimate)
- Handling of skewness with acceleration factor a :

$$
a=\frac{\sum_{i=1}^{n}\left(\hat{\theta}_{(\cdot)}-\hat{\theta}_{(i)}\right)^{3}}{6\left\{\sum_{i=1}^{n}\left(\hat{\theta}_{(\cdot)}-\hat{\theta}_{(i)}\right)^{2}\right\}^{3 / 2}}
$$

where $\hat{\theta}_{(i)}$ is estimated leaving out observation i and $\hat{\theta}_{(\cdot)}$ is mean of $\hat{\theta}_{(i)}$

- This is a jackknife approach for estimating the change of $\operatorname{se}(\hat{\theta})$ when θ changes

Bagging (bootstrap aggregating)

- In the examples we discussed, we had an estimate $\hat{\theta}$ and got information about its uncertainty with the bootstrap approach, e.g. constructing a CI
- In bagging, bootstrap is used to improve the estimate $\hat{\theta}$ itself by $\frac{1}{B} \sum_{i=1}^{B} \hat{\theta}_{i}$
- For example, if $\hat{\theta}$ is based on model-fitting where very different models could be chosen only if some observations are changed, the bootstrap estimate is model averaging
- $\hat{\theta}$ might be based modelling with on neural networks or regression models with data-dependent feature selection
-See Section 7.1-7.2 of Lindholm, Wahlström, Lindsten, Schön (2022)

[^0]: To use bootstrap gives here much better estimates than with normal assumption! You get easily a confidence interval as well.)

