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• Topic 1: Gradient based optimisation

• Topic 2: Stochastic gradient based optimisation

• Topic 3: Gradient free optimisation

• Topic 4: Optimisation with constraints

• Topic 5: EM algorithm and bootstrap

• Topic 6: Simulation of random variables

• Topic 7: Importance sampling

Course homepage: 
http://www.adoptdesign.de/frankmillereu/adcompstat2023.html

Includes schedule, reading material, lecture notes, assignments
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• EM = “Expectation-Maximization”

• Main application of this algorithm is in situations where not all data is 
observed

• E: Expectation will be taken over all (unobserved) data which lead to the 
observed data

• Algorithm is iterative: 
each iteration has an E step, followed by an M step
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• Classical example: Genotype–phenotype 

• Peppered moths (see Ex.4.2 in GH, “björkmätare”)

• Alleles: C, I, T; genotypes: CC,CI,CT;  II,IT;       TT

• Observed only phenotype: carbonaria; insularia; typica  
Frequency observed:       nC;             nI;           nT

• Aim: estimate allele frequencies pC, pI, pT based on observed phenotype frequencies 
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Source: Wikipedia; Pictures taken by Olaf Leillinger Licence: CC BB-SA 3.0

Typica

Carbonaria

https://en.wikipedia.org/wiki/Peppered_moth
https://creativecommons.org/licenses/by-sa/3.0/deed.en


• Observed data: X = (NC, NI, NT)

• Complete data: Y = (NCC, NCI, NCT, NII, NIT, NTT)

• Aim: estimate p = (pC, pI, pT) 

• We can specify

• the expectations E[Y|X,p] and

• the complete data likelihood fY(y|p)
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• According to biological theory: 
P(a random moth is CC) = (pC)2

P(a random moth is CI) = 2pC pI
…

• The complete data likelihood fY(y|p) is multinomial:

𝑓𝒀 𝒚 𝒑 = 𝑝𝐶
2 𝑁𝐶𝐶 ∗ 2𝑝𝐶𝑝𝐼

𝑁𝐶𝐼 ∗ ⋯∗
𝑁

𝑁𝐶𝐶 𝑁𝐶𝐼 …

• Complete data log likelihood: 
log 𝑓𝒀 𝒚 𝒑 = 𝑁𝐶𝐶 ∗ log 𝑝𝐶

2 +𝑁𝐶𝐼 ∗ log 2𝑝𝐶𝑝𝐼 +⋯

• Expectations E[Y|X,p] are for example:

𝐸 𝑁𝐶𝐶 𝑁𝐶 , 𝑁𝐼 , 𝑁𝑇 , 𝑝 = 𝑁𝐶
𝑝𝐶
2

𝑝𝐶
2 + 2𝑝𝐶𝑝𝐼 + 2𝑃𝐶𝑝𝑇
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• Let X be observed data, Y complete data, θ unknown parameter-vector, 
L(θ|x) likelihood to maximize

• Iteration t (t=0,1,…): θ(t)

• Let 𝑄 𝜽 𝒙; 𝜽 𝑡 = 𝐸 log 𝐿 𝜽 𝑌 |𝒙; 𝜽 𝑡 be expectation of joint log likelihood 

for complete data conditional on observed data X=x

• EM algorithm:

1. Initialize parameter-vector with a guess θ(0)

2. E step: Compute 𝑄 𝜽 𝒙; 𝜽 𝑡

3. M step: Maximize 𝑄 𝜽 𝒙; 𝜽 𝑡 with respect to θ -> 𝜽 𝑡+1

4. Back to E step if not stopping criterion met (e.g. if 𝜽 𝑡+1 − 𝜽 𝑡 small)
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• Effect of a drug to be measured and n patients (randomly chosen out of a population 
of patients) treated with the drug 

• Xi, i=1,…,n, observed for each patient after drug-treatment

• Known that population consists of two groups: 

• One group responds well to the drug (i.e. larger Xi)

• Another group responds only barely (smaller Xi)

• It is not known which patient belongs to which group

• We assume a mixture distribution for Xi and want to estimate the parameters based 
on the observed data
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Observed: Xi,

Unobserved: 𝒁𝒊 = ቊ
𝟏, if patient 𝒊 belongs to responder group
𝟎, otherwise

Complete data: Yi = (Xi, Zi)



• Generally, a density fM of a finite mixture distribution is the sum of c
weighted densities fi of distributions:

𝑓𝑀 𝒙 = σ𝑖=1
𝑐 𝑝𝑖𝑓𝑖(𝒙; 𝜽𝑖)

where pi is a weight or mixing coefficient for the ith term (pi>0; p1+…+pc=1), 
and 𝑓𝑖(𝒙; 𝜽𝑖) is a probability density with parameter-vector 𝜽𝑖

• If all c distributions in the mixture are (univariate or multivariate) normal 
distributions, we have a normal mixture

• In Lecture 1, we had an example of a bivariate normal mixture
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• In Example 2, assume that for both groups in the population (responders, 
non-responders), Xi follows normal distribution (unknown mean and 
variance)

• Appropriate mixture? How many parameters has it? 

• Appropriate mixture: 𝑓𝑀 𝑥 = 𝑝𝜑(𝑥; 𝜇1; 𝜎1) + (1 − 𝑝)𝜑(𝑥; 𝜇2; 𝜎2) with 
𝜑(𝑥; 𝜇; 𝜎) being density of N(µ,σ) and p=mixing probability (probability to be 
a responder)

• 5 parameters: 𝑝; 𝜇1; 𝜎1; 𝜇2; 𝜎2
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• 𝑓𝑀 𝑥 = 𝑝𝜑(𝑥; 𝜇1; 𝜎1) + 1 − 𝑝 𝜑 𝑥; 𝜇2; 𝜎2

• parameters: 𝑝; 𝜇1; 𝜎1; 𝜇2; 𝜎2

• Example here: 𝑝 = 0.4; 𝜇1 = 0; 𝜎1 = 0.7; 𝜇2 = 2; 𝜎2 = 0.8
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Ƹ𝑝𝑖𝜑 𝑥𝑗; Ƹ𝜇𝑖; ො𝜎𝑖

i=1

i=2

xj=1.5• The estimated probability that observation j belongs to 
group i is

ො𝜋𝑖𝑗 =
ො𝑝𝑖𝜑 𝒙𝒋; ෝ𝝁𝑖; ෡Σ𝑖

σ𝑘=1
𝑐 ො𝑝𝑘𝜑 𝒙𝑗; ෝ𝝁𝑘; ෡Σ𝑘

,

where 𝜑 ∙; 𝝁;Σ is density of (uni- or multivariate) normaldistr.
with mean vector μ and variance matrix Σ (in the univariate
case, we use sd 𝜎𝑖 instead)

• Maximizers for Q of the model parameters are

• ො𝑝𝑖 =
1

𝑛
σ𝑗=1
𝑛 ො𝜋𝑖𝑗, 

• ෝ𝝁𝑖 =
1

ො𝑝𝑖𝑛
σ𝑗=1
𝑛 ො𝜋𝑖𝑗 ∙ 𝒙𝑗, 

• ෡Σ𝑖 =
1

ො𝑝𝑖𝑛
σ𝑗=1
𝑛 ො𝜋𝑖𝑗 ∙ (𝒙𝑗 −ෝ𝝁𝑖)(𝒙𝑗−ෝ𝝁𝑖)

𝑇

• Q = σ𝑖=1
𝑐 σ𝑗=1

𝑛 ො𝜋𝑖𝑗 log ො𝑝𝑖 + log𝜑 𝒙𝒋; ෝ𝝁𝑖; ෡Σ𝑖

• See Section 10.1 and 10.2 of Lindholm, Wahlström, Lindsten, Schön (2022)

Unidimensional case for sd 
(instead of variance):

ෝ𝜎𝑖 =
1

Ƹ𝑝𝑖𝑛
෍

𝑗=1

𝑛

ො𝜋𝑖𝑗 ∙ (𝑥𝑗 − Ƹ𝜇𝑖)
2



• EM algorithm:

1. Initialize parameter-vector with a guess 

𝜽 0 = (𝑝1
(0)
, … , 𝑝𝑐

(0)
, 𝝁1

(0)
, … , 𝝁𝑐

(0)
,Σ1

(0)
, … ,Σ𝑐

(0)
)

2. E step: Compute probabilities ො𝜋𝑖𝑗 for individuals belonging to each group

3. M step: Maximize model parameters with formulae given before. Result 
is:

𝜽 𝑡+1 = (𝑝1
(𝑡+1)

, … , 𝑝𝑐
(𝑡+1)

, 𝝁1
(𝑡+1)

, … , 𝝁𝑐
(𝑡+1)

,Σ1
(𝑡+1)

, … ,Σ𝑐
(𝑡+1)

)

4. Back to E step if not stopping criterion met
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• Example for illustration: n=9 observations obtained. Ordered data: 
0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0

• EM algorithm terminates after 8 iterations with:

(𝑝1
8
, 𝜇1

(8)
, 𝜇2

(8)
, 𝜎1

(8)
, 𝜎2

(8)
) = (0.444, 0.600, 3.460, 0.361, 0.532)

• Mean, sd, and ො𝜋1𝑗 converge as follows:

2023-05-02Advanced computational statistics L5 15



• Example for illustration: n=9 observations obtained. Ordered data: 
0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0

• EM algorithm terminates after 8 iterations with:

(𝑝1
8
, 𝜇1

(8)
, 𝜇2

(8)
, 𝜎1

(8)
, 𝜎2

(8)
) = (0.444, 0.600, 3.460, 0.361, 0.532)

• Over the iterations, Q converges as follows:
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Q

-20.69286

-19.68185

-17.56861

-14.35840

-13.19032

-12.03445

-11.71313

-11.71272
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emalg <- function(dat, eps=0.000001){

n      <- length(dat)

pi     <- rep(NA, n)   #initialize vector for prob. to belong to group 1  

p      <- 0.5          #Starting value for mixing parameter 

sigma1 <- sd(dat)*2/3  #Starting value for variances

sigma2 <- sigma1

mu1    <- mean(dat)-sigma1/2 #Starting values for means

mu2    <- mean(dat)+sigma1/2

pv <- c(p, mu1, mu2, sigma1, sigma2)  #parameter vector

cc     <- eps + 100    #initialize conv. crit. not to stop directly

while (cc>eps){

pv1  <- pv #Save previous parameter vector

### E step ###

for (j in 1:n){

pi1   <- p*dnorm(dat[j], mean=mu1, sd=sigma1)

pi2   <- (1-p)*dnorm(dat[j], mean=mu2, sd=sigma2)

pi[j] <- pi1/(pi1+pi2)

}

### M step ###

p      <- mean(pi)

mu1    <- sum(pi*dat)/(p*n)

mu2    <- sum((1-pi)*dat)/((1-p)*n)

sigma1 <- sqrt(sum(pi*(dat-mu1)*(dat-mu1)/(p*n)))

sigma2 <- sqrt(sum((1-pi)*(dat-mu2)*(dat-mu2)/((1-p)*n)))

######

pv <- c(p, mu1, mu2, sigma1, sigma2)

cc     <- t(pv-pv1)%*%(pv-pv1)

}

pv

}

data <- c(0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0)

emalg(data)
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● We want to create automatically starting values 

which are meaningful for the data

● My heuristic rule to choose them in the R-code 

before:

– Take total data and compute overall mean and sd

– Overall sd is usually larger than sd’s for groups

– Therefore, I took 2/3* overall sd for the sd in 
both groups

– For group means, starting values with 1 sd
difference chosen

mean sd
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● We consider now an unsupervised learning situation with multivariate data 

coming from c groups, but it is unknown from which group each observation 

comes from (i.e., we have unlabeled data)

● Task: estimate to which group the observations belong to (i.e., classification)
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● Initialize with k means

𝝁1
(0)
, ⋯ , 𝝁𝑘

(0)

● Assignment step:

Each observation is assigned to the 

nearest mean 𝝁𝑖
(𝑡)

● Update step:

For each group i calculate the new 

mean 𝝁𝑖
(𝑡)

● Iterate until groups do no longer 

change
Annimation by: Chire
https://commons.wikimedia.org/wiki/File:K-means_convergence.gif
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● The k-means algorithm creates clusters of similar size

● Sometimes more flexibility about cluster size desired

● Assuming a multivariate normal mixture enables using the EM algorithm  

Figure by: Chire
https://upload.wikimedia.org/wikipedia/commons/0/09/ClusterAnalysis_Mouse.svg
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● We can look at the data and guess the components in the mixture, their mean 

and variance

● We can use a heuristic rule to determine starting values (like in Example 2)

● We can try a grid of starting parameter values

● We can first run a classification algorithm and use its result as starting values 

for the EM algorithm



• Stopping criterion e.g. 𝜽 𝑡+1 − 𝜽 𝑡 𝑇
𝜽 𝑡+1 − 𝜽 𝑡 < 𝜖

• Other stopping criteria:

• Absolut stopping criterion, 𝜽 𝑡+1 − 𝜽 𝑡 < 𝜖,

• Relative stopping criterion, 𝜽 𝑡+1 − 𝜽 𝑡 / 𝜽 𝑡+1 < 𝜖,

• Modified rel. stopping crit., 
𝜽 𝑡+1 −𝜽 𝑡

𝜽 𝑡+1 +ε
< ε

• Different norms ∙ can be used 

• EM: instead of parameter vector, can look at log-likelihood and compare 
it between iterations

𝑄 𝜽 𝒙; 𝜽 𝑡+1 − 𝑄 𝜽 𝒙; 𝜽 𝑡 <ε
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• Assume you have independent samples of some population

• In statistics, we have methods to construct confidence intervals (CIs) for a 
parameter 𝜃 of interest (e.g., mean) based on distributional assumptions; 
e.g., explicit formulas exist in case of normal distribution

• Sometimes not reasonable to make distributional assumptions

• With methods we will discuss here, we can obtain CIs without these 
distributional assumption

• The available sample is our best information about the population – we 
take the available sample as assumption for distribution of 
population

• We pull ourselves up by our own capabilities –
like “pulling us up from the mud by our own bootstraps” 
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• Rainfall data from July in 233 years in Stockholm

• What is the mean and a 95%-CI for the mean?

• With standard formulae, we can calculate CI:
ҧ𝑥 = 62.6𝑚𝑚, 𝑠 = 35.0, 𝑛 = 233,
𝑠 ҧ𝑥 = Τ𝑠 𝑛 = 2.29,
𝑡0.025,233 = 1.970

• 95%-CI-bounds: ҧ𝑥 ± 𝑠 ҧ𝑥 ⋅ 𝑡0.025,233

• 95%-CI is here: (58.1, 67.1)

• But: normal distribution assumed

26

Data source: SMHI
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• This data is not normally distributed

• We want to make a more realistic assumption: 
Actual sample distribution is best information 
about distribution

• Idea: Given the 233 observations, sample 
from them with replacement until you 
have 233; calculate mean;
repeat this B=1000 times;
we have now 1000 means: the ”middle 950” 
give a 95%-CI
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• We illustrate the bootstrap using 
only the last 6 years:

• First resample:

• Second resample:

• Third resample:

• …

• 1000th resample:

• The mean of each resample: 47.6, 46.3, 42.5, …, 53.7 

28

42.3, 44.1, 91.9, 47.6, 14.6,  5.9

5.9, 42.3,  5.9, 47.6, 91.9, 91.9

42.3, 44.1, 42.3, 91.9, 42.3, 14.6

47.6, 44.1, 42.3, 14.6, 91.9, 14.6

47.6, 42.3, 91.9, 91.9,  5.9, 42.3
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• From the complete data, we made 1000 resamples; 
the 1000 means of those are in the histogram

• The mean of the means: 62.6 mm
(bootstrap estimate is here the same as the usual estimate of the mean ҧ𝑥)

• The middle 95% of the means are from 58.2 to 66.7 
– this is our 95%-bootstrap-CI for the mean
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• Original data of size n is given, a certain property 𝜃 (e.g. mean, variance, …) 

should be estimated by ෠𝜃; its uncertainty should be quantified (e.g. CI for 𝜃)

• Draw B resamples of size n of the original data with replacement 
B=500 or 1000 has been used historically; B=10000 is nowadays often no problem

• Usually, there are repetitions in a resample

• Calculate the property of interest for each resample: ෠𝜃𝑖, i=1, …, B; 
the distribution of these B values (”bootstrap distribution”) can be used e.g.
to compute a CI for 𝜃

• Advantage: no assumption for distribution of original data

• Which assumption is still made?
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• R code using a loop for bootstrap replicates:

bo <- 1000   # bootstrap replicates

bs <- c()    # to save the results for the means

for (l in 1:bo){

x  <- sample(mrain, size=length(mrain), replace=TRUE)

bs <- c(bs, mean(x)) 

}

hist(bs)

bss <- sort(bs)

ci95 <- c(bss[round(bo*0.025)], bss[round(bo*0.975)])

ci95

• A run of this code gave (58.2, 66.7) as 95% bootstrap confidence interval
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boot

• As alternative, package boot with functions boot and boot.ci can be used
library(boot)

• Define first function of interest, e.g. the mean:
bootmean <- function(x, i) mean(x[i])

• Generate B bootstrap resamples with function boot:
bss <- boot(mrain, bootmean, R=1000)

• You can plot a histogram of the bootstrap distribution:
hist(bss$t)

• A 95%-CI is between 2.5%- and 97.5%-percentile of bootstrap distribution:
boot.ci(bss, type=”perc”)

• The method used here for the CI-bounds is called “percentile method”
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• When a parametric model for the data is known or 
believed to represent the reality well, we can do 
parametric bootstrap and sample according to the 
assumed model

• Example: We assume that monthly precipitation in July 
follows a Gamma(3, 20)-distribution

• We sample 233 datapoints from Gamma(3, 20) and 
calculate parameter of interest

• Do this B times and derive e.g. a confidence interval



• What is an estimated probability for “less than 10mm rain in next 
July”? How good is our estimation? (➔ CI)

• Reasonable to calculate proportion of years with July-rain < 10mm. 
Here: in 10 of 233 years = 0.043

• To calculate a 95%-CI, we generate a bootstrap distribution
(We resample B times and compute for each resample the proportion of years with July-rain < 10 mm) 

• We use it’s 2.5%- and 97.5%-percentile: 
(0.0172, 0.0687) 

• Conclusion: The probability for < 10mm rain in July is 
between 1.7% and 6.9%; estimate is 4.3%

• (With normal assumption an estimate would be 6.6%. But a probability for < 0 mm rain would be 3.7%... 
To use bootstrap gives here much better estimates than with normal assumption! You get easily a confidence interval as well.)
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boot

• Define function of interest, here proportion below 10mm:
bootdry <- function(x, i) mean((x[i]<10))

• Generate B=100000 bootstrap resamples:
bsdry <- boot(mrain, bootdry, R=100000)

• Plot a histogram of bootstrap distribution:
hist(bsdry$t)

• Estimate proportion:
bootdry(mrain)

• A 95%-CI is between the 2.5%- and 97.5%-percentile of the bootstrap 
distribution:
boot.ci(bsdry, type=”perc”)
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• We can use the bootstrap method very flexibly, 
e.g. in linear regression if we want a CI for 
the slope or the residual standarddeviation

• Example: The (toxic) influence of a fertilizer on 
growth of garden cress was investigated in an 
experiment (yield vs. amount of fertilizer, n=81)

• Estimated linear regression:
𝑦𝑖𝑒𝑙𝑑 = 203.3 − 71.3 ∙ 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟

with residual standarddeviation ො𝜎 = 26.7

• CI for slope? CI for ො𝜎?
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• The dataset has n=81 pairs of fertilizer-yield-values

• The bootstrap resamples n pairs with replacement, 
computes regression-slope and ො𝜎

• This is done B times; R-code:

cressdat <- data.frame(fertilizer,yield) 

cmslope <- function(dat, i) 

{

cm  <- lm(yield~fertilizer, subset=i, data=dat)

coef(cm)[2]

}

cb <- boot(cressdat, cmslope, R=10000)

boot.ci(cb, type="perc")

• Result for CI-limits: -83.5, -58.7
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• A function for analysis of the residual ො𝜎 is:

cmressd <- function(dat, i) 

{

cm  <- lm(yield~fertilizer, subset=i, data=dat)

summary(cm)$sigma

}

• Result for CI-limits: 22.62, 29.91 (percentile method)

• Median (50% percentile) of bootstrap distribution: 26.27 

• Residual ො𝜎 of data: 26.72

• Percentile CI is constructed around 26.27 while it should 
be constructed around 26.72 ➔ the CI is biased
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• The percentile method which we used so far can have drawbacks

• Bias: Estimate ෠𝜃 might be very different from median of bootstrap 
distribution, median( ෠𝜃𝑖), but we would like a CI constructed around ෠𝜃

• The bootstrap distribution might be heavily skewed implying that the se( ෠𝜃) 
changes with the true 𝜃

• The BCa method (bias correction – accelerated) improves the percentile 
method by

• correcting for bias and

• adjusting the boundary alpha-levels to handle dependence of se( ෠𝜃) on 𝜃

• If bootstrap distribution has not these issues, BCa = percentile

• For other methods (and BCa) see Givens and Hoeting (2013), Chapter 9.3. 
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• Like percentile method, BCa uses quantiles from the bootstrap distribution, but 
instead of 𝛼/2 and 1 − 𝛼/2, it uses the two corrected quantiles

Φ(𝑧0 +
𝑧0±𝑧𝛼/2

1−𝑎 𝑧0±𝑧𝛼/2
)

• Bias: Define 𝑧0 = Φ−1(proportion of bootstrap values below estimate)

• Handling of skewness with acceleration factor 𝑎:

𝑎 =
σ𝑖=1
𝑛 ෠𝜃(⋅) − ෠𝜃(𝑖)

3

6 σ𝑖=1
𝑛 ෠𝜃(⋅) − ෠𝜃(𝑖)

2 3/2

where ෠𝜃(𝑖) is estimated leaving out observation i and ෠𝜃(⋅) is mean of ෠𝜃(𝑖)

• This is a jackknife approach for estimating the change of se( ෠𝜃) when 𝜃 changes
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• In the examples we discussed, we had an estimate ෠𝜃 and got information 
about its uncertainty with the bootstrap approach, e.g. constructing a CI

• In bagging, bootstrap is used to improve the estimate ෠𝜃 itself by 1
𝐵
σ𝑖=1
𝐵 ෠𝜃𝑖

• For example, if ෠𝜃 is based on model-fitting where very different models 
could be chosen only if some observations are changed, the bootstrap 
estimate is model averaging

• ෠𝜃 might be based modelling with on neural networks or regression models 
with data-dependent feature selection

• See Section 7.1-7.2 of Lindholm, Wahlström, Lindsten, Schön (2022)
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