
http://creativecommons.org/licenses/by-nc/4.0/

• Topic 1: Gradient based optimisation

• Topic 2: Stochastic gradient based optimisation

• Topic 3: Gradient free optimisation

• Topic 4: Optimisation with constraints

• Topic 5: EM algorithm and bootstrap

• Topic 6: Simulation of random variables

• Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2023.html

Includes schedule, reading material, lecture notes, assignments

2023-05-16Advanced computational statistics L6 2

http://www.adoptdesign.de/frankmillereu/adcompstat2023.html

• Computer-generated random variables

• Purpose:

• Simulate a situation where a statistical model can be assumed

• Simulate situation repeatedly to investigate properties of estimators,
confidence intervals, significance tests

• Example: power of a test in situations where assumptions are not fulfilled

• Perform Monte Carlo integration

• Problem: Given a density f of a target distribution, generate random draws
X1, …, Xn which follow the target distribution

2023-05-16Advanced computational statistics L6 3

• Computer-generated random variables are not really random but
deterministic (Gentle, Härdle, Mori, 2012, Ch.3)

• Algorithms are used such that the deterministic nature is not visible, and
variables seem random

• Deterministic algorithm generates values between 0 and 1 which follow
well independent draws from Unif[0,1]

• Then, random variables following other familiar distributions can be
generated from Unif[0,1] and are implemented in statistical software, see
Givens and Hoeting (2013), Tab. 6.1

2023-05-16Advanced computational statistics L6 4

R

• In R, random variables can be generated for a number of distributions, e.g:

• rbeta, rcauchy, rchisq, rexp, rf, rgamma, rlnorm, rnorm,

rt, runif, rweibull

• rbinom, rgeom, rhyper, rmultinom, rnbinom, rpois

x <- rnorm(6, mean = 1.2, sd = 2)

x

[1] 3.8839870 2.8328797 3.5344539 -2.5464309 3.2059822 0.1872261

rbinom(25, size = 3, prob = 0.25)

[1] 1 2 0 0 0 0 0 2 3 0 0 2 1 1 0 0 1 0 1 1 2 2 1 0 0

2023-05-16Advanced computational statistics L6 5

• Problem: Given a density f of a target distribution, generate random draws
X1, …, Xn which follow the target distribution

• Now: Density f of arbitrary form

• Methods we will consider:

• Inverse transformation method

• Rejection sampling

• Composition sampling

• Sampling importance resampling (SIR)

• Markov chain Monte Carlo (MCMC)

2023-05-16Advanced computational statistics L6 6

• Continuous random variable X with density f and distribution function F

• Then: F(X) is uniformly distributed on [0,1]

• Therefore: if we can generate uniformly distributed random variables U,
we can compute 𝑋 = 𝐹−1(𝑈) and obtain the desired sample

2023-05-16Advanced computational statistics L6 7

• Example 1: We want to generate random variables X with triangle
distribution having density

𝑓 𝑥 = ቊ
2 − 2𝑥, if 0 ≤ 𝑥 ≤ 1,
0, otherwise

• We compute the distribution function:

𝐹 𝑥 = ∞−
𝑥

𝑓 𝑡 𝑑𝑡 = ቐ
0, if 𝑥 < 0,

2𝑥 − 𝑥2, if 0 ≤ 𝑥 ≤ 1,
1, if 𝑥 > 1.

• The inverse distribution function is
𝐹−1 𝑦 = 1 − 1 − 𝑦

since 𝑦 = 2𝑥 − 𝑥2 ֞ 𝑥2 − 2𝑥 + 𝑦 = 0 ֞

𝑥1,2 = 1 ± 1 − 𝑦 ֜ 1 − 1 − 𝑦

2023-05-16Advanced computational statistics L6 8

• 1000 random numbers for the triangle
distribution can be generated by:

u <- runif(1000)

x <- 1-sqrt(1-u)

hist(x)

2023-05-16Advanced computational statistics L6 9

• Example 2: We want to generate a random variable X being
0 with probability 0.35,
1 with probability 0.05,
2 with probability 0.4,
3 with probability 0.2

• F(x)=P(X≤x); how to apply inverse
transformation method?

2023-05-16Advanced computational statistics L6 10

• Example 2: We want to generate a random variable X being
0 with probability 0.35,
1 with probability 0.05,
2 with probability 0.4,
3 with probability 0.2

• How to apply inverse transformation method?

• Generate U~Unif[0,1]

• If U ≤ 0.35, then X = 0,
if 0.35 < U ≤ 0.4, then X=1,
if 0.4 < U ≤ 0.8, then X=2,
if 0.8 < U, then X=3.

u <- runif(100000)

x <- (u>0.35)+(u>0.4)+(u>0.8)

2023-05-16Advanced computational statistics L6 11

This is 1 if the condition in (…)
is true, otherwise it is 0

• Inverse transformation worked well in preceding examples

• In general, drawbacks are:

• Computation of 𝐹−1 might be difficult

• Not possible to generalize to multiple dimensions

• Often less efficient as alternatives

2023-05-16Advanced computational statistics L6 12

• Problem: Given a density f of a target distribution, generate random draws
X1, …, Xn which follow the target distribution

• It can be difficult to sample with respect to f

• Situation: There is another density g which
can be sampled from and which is after
scaling larger than f for all x,

e(x)=g(x)/𝛼 ≥ f(x)
for all x and some 𝛼 < 1

• e(x) is called ”envelope”

2023-05-16Advanced computational statistics L6 13

• e(x)=g(x)/𝛼 ≥ f(x) for all x and some 𝛼 < 1

• Rejection sampling algorithm:

1. Sample Y~g

2. Sample U~Unif(0,1)

3. If U≤f(Y)/e(Y), accept Y; set X=Y; otherwise reject it

4. If more samples desired go to 1.

Example (for picture above): Y=2.21; f(Y)=0.267, e(Y)=0.435,
f(Y)/e(Y)=0.616; sample U; If U≤0.616, use Y, otherwise reject it

2023-05-16Advanced computational statistics L6 14

1. Sample Y~g=e𝛼

2. Sample U~Unif(0,1)

3. If U≤f(Y)/e(Y), accept Y; set X=Y; otherwise reject it

4. If more samples desired, go to 1

Example (for picture above):

(Y1,U1)=(2.21,0.492) ➔ U1<0.616 ➔ accept Y1

(Y2,U2)=(0.17,0.952) ➔ U2>f(0.17)/e(0.17) ➔ reject Y2

(Y3,U3)=(1.76,0.250) ➔ U3<f(1.76)/e(1.76) ➔ accept Y3

(Y4,U4)=(1.55,0.880) ➔ U4>f(1.55)/e(1.55) ➔ reject Y4

(Y5,U5)=(0.90,0.619) ➔ U5<f(0.90)/e(0.90) ➔ accept Y5

➔ use (2.21, 1.76, 0.90)

2023-05-16Advanced computational statistics L6 15

• e(x)=g(x)/𝛼≥ f(x) for all x and some 𝛼 < 1

• Squeezing function s(x), s(x)≤f(x)

• Squeezed rejection sampling algorithm:

1. Sample Y~g

2. Sample U~Unif(0,1)

3. If U≤s(Y)/e(Y), accept Y; set X=Y; go to 5

4. If U≤f(Y)/e(Y), accept Y; set X=Y

5. If more samples desired go to 1.

Example (for picture above): Y=0.90; s(Y)=0.32, e(Y)=0.55, s(Y)/e(Y)=0.582;
sample U; If U<0.582, use Y, otherwise compute f(Y)=0.479, f(Y)/e(Y)=0.871,
and use Y if U<0.871, otherwise reject

2023-05-16Advanced computational statistics L6 16

• An automated generation of envelope and squeezing functions can be good

• Adapt (improve) these functions where it is necessary

• Assumption: f log-concave, continuous, differentiable, f>0 on an interval I

• Start with grid 𝑇𝑘 = {𝑥1, … , 𝑥𝑘} of points on I; consider h=log(f)

• The tangents of the concave h in 𝑥𝑖 form an upper hull 𝑒∗(𝑥) of h,
➔ 𝑒 𝑥 = exp(𝑒∗ 𝑥) is an envelope

• The interpolations between the 𝑥𝑖 forms a lower hull 𝑠∗(𝑥) of h,
➔ 𝑠 𝑥 = exp(𝑠∗ 𝑥) is a squeezing function

• If x was rejected or (in the case of squeezing) if x is accepted in Step 4
[s(x)/e(x)<U≤f(x)/e(x)], then the point x is added to 𝑇𝑘➔ 𝑇𝑘+1

2023-05-16Advanced computational statistics L6 17

• Example 3: N(0,1), 𝑓 𝑥 =
1

2𝜋
exp −

𝑥2

2
, 𝑇2 = {𝑥1, 𝑥2}, x2 = −x1 = 1.2

2023-05-16Advanced computational statistics L6 18

Proportion of waste:

∞−/1-1
∞

𝑒 𝑥 𝑑𝑥

Here: 1-1/1.366=0.268

𝑒∗ 𝑥

e x = exp(𝑒∗ 𝑥)

𝑓 𝑥

ℎ 𝑥 = log 𝑓 𝑥

• An adaptive rejection sampling version exists which does not require the
derivative of h (secants instead of tangents are used, see Givens and
Hoeting (2013; Chapter 6.2.3.2)

• Adaptive rejection sampling can be used for multidimensional cases, for
example as subroutine in Gibbs sampling

• Many densities are log-concave, but some are not; non-log-concave
densities can be handled by combining it with a Metropolis step

2023-05-16Advanced computational statistics L6 19

• A finite mixture distribution can be generated by:

• simulating the group-membership using the discrete distribution for
mixing parameters

• simulating the distribution of this group’s distribution

• See Gentle, Härdle, Mori (2012), Section 3.8.7

• Ex. 4: X normal mixture of N(0,1) and N(4,1.52)
with mixing parameter 0.7 and 0.3, respectively

g <- rbinom(100000, size = 1, prob = 0.3)

x <- rnorm(100000, mean = 4*g, sd = 1+0.5*g)

hist(x, breaks = 25)

2023-05-16Advanced computational statistics L6 20

• More flexible code for simulating a finite mixture distribution (e.g., a finite
normal mixture) with composition sampling:

• Define mean, standard deviations and mixing parameters as vector:

mu <- c(-2, 5, 11)

sigma <- c(2.2, 1.4, 2.9)

prob <- c(0.4, 0.25, 0.35)

n <- 10000

• Generate mixture by:

g <- sample(length(mu), n, replace=TRUE, p=prob)

x <- rnorm(n, mean = mu[g], sd = sigma[g])

hist(x, breaks = 25)

2023-05-16Advanced computational statistics L6 21

• Given n independent and identically distributed observations X1, …, Xn with
mean µ, one can test H0: µ=0 versus H1: µ>0 with the one-sample t-test

reject 𝐻0 if and only if
𝑛 ҧ𝑥

𝑠𝑥
> 𝑡𝑛−1;1−𝛼

• Assumption for test: normal distribution of observations

• How sensitive is t-test if observations not normal?

• We focus on H0 first: Can type I error be larger than α (such that it matters)
for certain distributions?

• Idea:

• Choose some distributions with mean=0, simulate n repetitions, perform
t-test, and record if rejected

• Repeat this s times and check rejection rate

2023-05-16Advanced computational statistics L6 22

• For n=10, simulate rejection rate for Unif[-1,1]
#Simulation of one sample t-test

s <- 100000

n <- 10

count <- 0

for (sim in 1:s)

{

x <- runif(n, min = -1, max = 1)

reject <- (t.test(x, alternative = "greater")$p.value < 0.05)

count <- count + reject

}

#Rejection rate estimate:

rre <- count/s

• Note that there are possibilities to make simulation more efficient (e.g., by
avoiding the loop) – see code on homepage

2023-05-16Advanced computational statistics L6 23

This is 1 if the condition in (…)
is true, otherwise it is 0

s <- 100000

n <- 10

count <- 0

for (sim in 1:s)

{

x <- runif(n, min = -1, max = 1)

reject <- (t.test(x, alternative = "greater")$p.value < 0.05)

count <- count + reject

}

rre <- count/s

• Precision of result?

p = true rejection rate; reject~𝐵𝑖𝑛 1, 𝑝 , count~𝐵𝑖𝑛 𝑠 = 100000, 𝑝

𝑉𝑎𝑟 count = 𝑝 1 − 𝑝 𝑠, 𝑉𝑎𝑟
count

𝑠
=
𝑝 1 − 𝑝

𝑠
, 𝑠𝑑 rre =

𝑝 1 − 𝑝

𝑠

≈ 0.0007 for 𝑝 = 0.05.

2023-05-16Advanced computational statistics L6 24

• Simulated rejection rate for Unif[-1,1] for
n = 4, 5, …, 20 with 95%-simulation-error-
CIs based on 100 000 sim. for each n

• One more loop for n used

• Took ~1 min to simulate

2023-05-16Advanced computational statistics L6 25

• Again, rejection rate for n=10, but for:

a) An equal mixture of N(-2,1) and N(2,1),

b) Distribution with density: f(x)=c exp(-x4),

c) Distribution with density: f(x)=e-(x-1) 1{x>-1}

Which simulation method in each case?

2023-05-16Advanced computational statistics L6 26

• Methods considered so far generate intended distribution exactly

• Sampling importance resampling (SIR) is approximate method (this
approximation is often fully ok)

• Use again envelope-function g, but do not longer require the envelope being
larger than f everywhere

• If desired to draw n observations following f, start with sampling m
independent observations following g
(recommendation: m ≥ 10n)

• Resample then n from these m as described below

2023-05-16Advanced computational statistics L6 27

1. Sample m (≥ 10n) random variables Y1, …, Ym from 𝑔

2. Calculate standardized importance weights

𝑤 𝑌𝑖 =
𝑓(𝑌𝑖)/𝑔(𝑌𝑖)

σ𝑗=1
𝑚 𝑓(𝑌𝑗)/𝑔(𝑌𝑗)

for all m random draws Yi from 𝑔.

3. Resample X1, …, Xn from Y1, …, Ym with replacement with probabilities
𝑤 𝑌1 , … , 𝑤 𝑌𝑚

• X1, …, Xn follow then approximately f

• Note: f need to be known only up to a constant (constant cancels out in
calculation of standardized weights)

2023-05-16Advanced computational statistics L6 28

• A random variable Y has slash distribution if Y = X/U with X ~ N(0,1) and
U ~ Unif(0,1) independently

2023-05-16Advanced computational statistics L6 29

(Thanks to Yuliya Leontyeva for code and illustration on this slide!)

• Example 6: Use slash distribution as SIR envelope g to generate
random variables following standard normal density f

library("extraDistr") # used for computation of slash

density and simulation

sir <- function(m, n)

{

m - sample size from the envelope distribution

n - resample size

relative to n, m should be large

y <- rslash(m) # sample candidates Y1,...Ym iid from g

w <- dnorm(y)/dslash(y)

w <- w/sum(w) # calculate the standardized weights

x <- sample(y, n, replace=TRUE, prob=w) # resample with

probabilities = w

return(x)

}

x <- sir(100000, 5000)

The simulated data follows well a normal distribution

2023-05-16Advanced computational statistics L6 30

• Method worked well since envelope (slash distribution) had heavier tails
than target distribution (standard normal)

• If we run SIR to generate the slash distribution with
standard normal as envelope, no observations are
generated at tails

• Lowest and highest values in Y-sample receive high
weights (overrepresentation in X-sample)

• Recommendation: Use envelopes with heavier tails
(or equally heavy) than the target distribution

2023-05-16Advanced computational statistics L6 31

• The algorithms considered so far generate sequences of independent
observations which follow the target distribution exactly or approximately
(sampling importance resampling)

• We will now consider a method which generates a sequence of dependent
observations which follow the target distribution approximately

• The next observation (t+1) will be generated based on a proposal
distribution g which depends on the current observation (t), i.e. g(·|X(t))

• Since X(t+1) depends on X(t) but not on earlier
observations, the sequence (X(t)) is a Markov chain

2023-05-16Advanced computational statistics L6 32

• A general method to generate the Markov chain is the Metropolis-Hastings (MH)
algorithm

• A starting value x(0) is generated from some starting distribution

• Given observation x(t), generate x(t+1) as follows:

1. Sample a candidate x* from a proposal distribution g(·|x(t))

2. Compute the MH ratio 𝑅 𝑥 𝑡 , 𝑥∗ =
𝑓 𝑥∗ 𝑔 𝑥 𝑡 𝑥∗

𝑓 𝑥 𝑡 𝑔 𝑥∗ 𝑥 𝑡

3. Sample x(t+1) according to

𝑥(𝑡+1) = ൝
𝑥∗, with probabilitymin{𝑅 𝑥(𝑡), 𝑥∗ , 1}

𝑥(𝑡), otherwise

4. If more observations needed, set t <- t+1; go to 1

2023-05-16Advanced computational statistics L6 33

Metropolis algorithm
Special case when
g is symmetric:
g(x*|x(t)) = g(x(t)|x*)

=
𝑓 𝑥∗

𝑓 𝑥 𝑡

• Start value x(0); Stage j=0,1,2,… has 𝑚𝑗 iterations; set j=0

• Given iteration x(t), generate x(t+1) as follows:

1. Sample a candidate x* from a proposal distribution p(·|x(t))

2. Compute ℎ 𝑥 𝑡 , 𝑥∗ = exp(
𝑔 𝑥∗ −𝑔 𝑥 𝑡

𝜏𝑗
)

3. Define next iteration x(t+1) according to

𝑥(𝑡+1) = ൝
𝑥∗, with probabilitymin{ℎ 𝑥(𝑡), 𝑥∗ , 1}

𝑥(𝑡), otherwise

4. Set t <- t+1 and repeat 1.-3. 𝑚𝑗 times

5. Update 𝜏𝑗 = 𝛼(𝜏𝑗−1) and 𝑚𝑗 = 𝛽(𝑚𝑗−1); set j <- j+1; go to 1

𝜏𝑗 is temperature; function 𝛼 should slowly decrease it; function 𝛽 should be increasing

2023-04-04Advanced computational statistics L3 34

𝑔 𝑥 𝑡 − 𝑔 𝑥∗

for
minimisation

(RECALL)

• For fixed temperature 𝜏, simulated annealing algorithm is a Metropolis
algorithm

• Kirkpatrick et al. (1983) proposed name simulated annealing for using it as
optimisation method

• ℎ 𝑥 𝑡 , 𝑥∗ = exp
𝑔 𝑥 𝑡 −𝑔 𝑥∗

𝜏𝑗
=

exp −
𝑔 𝑥∗

𝜏𝑗

exp −
𝑔 𝑥(𝑡)

𝜏𝑗

=
𝑓 𝑥∗

𝑓 𝑥(𝑡)
= 𝑅(𝑥(𝑡), 𝑥∗)

• Key ingredient of Metropolis and simulated annealing alg.: Markov chain 𝒙 𝒕

has limiting stationary distribution f ; for a proof see e.g. Koski (2009)

• Requirement for all: 𝑥 𝑡 irreducible and aperiodic chain

2023-04-04Advanced computational statistics L3 35(RECALL)

2023-05-16Advanced computational statistics L6 36

• For illustration, we consider
two-dimensional distribution
with density f according to
contour lines in figure
(extended example from L3)

• Proposal distribution
g(x*|x(t)) = g(x(t)|x*)

=
1

𝜋𝑟2
1{ 𝑥(𝑡) − 𝑥∗ < 𝑟}

for some constant r (here=1)

2023-05-16Advanced computational statistics L6 37

• Proposal distribution
g(x*|x(t)) = g(x(t)|x*)

=
1

𝜋𝑟2
1{ 𝑥(𝑡) − 𝑥∗ < 𝑟}

for some constant r (here=1)

• Start here with x(0)=(1,-0.5)

• Randomize uniformly on unit
circle around x(0) (proposal
distribution); result x*=(0.58,0.08)

• f(x*)=0.296 > f(x(0)) = 0.098; so this was an uphill step and is

automatically accepted (𝑅 𝑥 𝑡 , 𝑥∗ =
𝑓 𝑥∗

𝑓 𝑥 𝑡 > 1)

2023-05-16Advanced computational statistics L6 38

• x(0)=(1,-0.5)

• Uphill steps: x(1)=(0.58,0.08)

• x(2)=(-0.33,0.13)

• x(3)=(-0.23,0.05)

• Then downhill step proposed:
x*=(-0.32,0.4),
𝑅 𝑥 𝑡 , 𝑥∗ =

𝑓 𝑥∗

𝑓 𝑥 𝑡 = 0.774

• Random Unif(0,1) generated: 0.573 and
since this is smaller than R=0.774, x(4)=x*=(-0.32,0.4) is accepted

• Again downhill step proposed: x*=(-0.67,1.31), 𝑅 𝑥 𝑡 , 𝑥∗ =
𝑓 𝑥∗

𝑓 𝑥 𝑡 = 0.560;

random Unif(0,1): 0.890 and rejection of x*

• x(5)=x(4)=(-0.32,0.4)

• After several additional
iterations (see red lines for
rejected proposals), one part
of the distribution was
explored to a good extend

• Since uphill steps preferred,
part of distribution with local
maximum at (-0.5,-0.5) is not yet ”detected” at all

• Occasionally, the path will arrive at this part as well

2023-05-16Advanced computational statistics L6 39

2023-05-16Advanced computational statistics L6 40

• Now, larger parts of
distribution explored

• A couple of animations can be found on:
https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,standard
(choose Algorithm: RandomWalkMH)

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,standard

(compare Givens and Hoeting, ex. 5.3)

• Consider Bayesian estimation of 𝜇 based on N(𝜇,32/7) likelihood for 𝜇 and
Cauchy(5,2) prior; observed mean=5.38

• The posterior density is proportional to product of likelihood and prior density

• Use MCMC to generate random samples following the posterior
density

• Based on these random samples, one can e.g.

• determine posterior probability that 2≤𝜇≤8

• determine mean and variance of posterior

2023-05-16Advanced computational statistics L6 41

• We use starting value x(0)=0, s=1000 iterations and following proposal
distributions g(·|x(t)):
x(t)+Unif[-0.2,0.2], x(t)+Unif[-1,1], x(t)+Unif[-8,8]

• Sample path plots show simulated values x(t) vs. iteration number t

2023-05-16Advanced computational statistics L6 42

Best choice

• Count “acceptance rate” (=proportion accepted proposals)

• Here: 98% 78% 18%

• Best results for 44% (uni-dim. case) to 23.4% (high dim. case) acceptance
probability (theory based on normal target and proposal functions, see
Givens and Hoeting, Chapter 7.3, for references about that)

• For multimodal functions lower acceptance probabilities might be good

2023-05-16Advanced computational statistics L6 43

• Based on sample path plots, we might choose Unif[-1,1] as proposal
distribution

• Often, one wants to discard initial samples (burn-in period) which
highly depend on starting value, e.g. 50 values + x(0)

2023-05-16Advanced computational statistics L6 44

• For s=10 000 iterations and burn-in of 50, we obtain

• Monte Carlo estimate for P(2≤𝜇≤8) is 0.9967
(Monte Carlo standard error= 0.9967 ∗ 0.0033/9950 = 0.0006)

• Estimated mean = 5.26, standarddeviation =0.99

2023-05-16Advanced computational statistics L6 45

• Were s=10 000 iterations enough to ensure convergence?

• Can depend on the purpose …

• E.g. for estimating P(2≤𝜇≤8)

• One can monitor cusum/convergence plots showing estimate versus iterations
(see Givens and Hoeting, ch.7.3.1.1)

• After 10 000 iterations

• After 10 000 iterations, we might not be happy with the left graph; we run longer
and are happy with 100 000

2023-05-16Advanced computational statistics L6 46

After 100 000 iterations

• Other proposal distributions g possible (not necessarily symmetric), e.g.
independent proposals

• Proposal distribution depends not on previous value, g(·|x(t))= g(·)

• The MH ratio is 𝑅 𝑥 𝑡 , 𝑥∗ =
𝑓 𝑥∗ 𝑔 𝑥 𝑡 𝑥∗

𝑓 𝑥 𝑡 𝑔 𝑥∗ 𝑥 𝑡 =
𝑓 𝑥∗ /𝑔(𝑥∗)

𝑓 𝑥 𝑡 /𝑔(𝑥 𝑡)

• A possible application is for Bayesian analysis (f is the posterior) with
proposal distribution g being the prior distribution

• f/g is then the likelihood

2023-05-16Advanced computational statistics L6 47

• In Givens and Hoeting (2013), Chapter 7 and 8, more about Markov chain
Monte Carlo algorithms

2023-05-16Advanced computational statistics L6 48

	Start / Välkommen
	Bild 1: Advanced computational statistics, lecture 6
	Bild 2: Course schedule
	Bild 3: Simulation in Statistics
	Bild 4: Random variables from familiar distributions
	Bild 5: Random variables of familiar distributions in R
	Bild 6: Random variables from non-familiar distributions
	Bild 7: Inverse transformation method
	Bild 8: Inverse transformation method
	Bild 9: Inverse transformation method
	Bild 10: Inverse transformation – discrete random variables
	Bild 11: Inverse transformation – discrete random variables
	Bild 12: Inverse transformation method
	Bild 13: Rejection sampling
	Bild 14: Rejection sampling
	Bild 15: Rejection sampling
	Bild 16: Squeezed rejection sampling
	Bild 17: Adaptive (squeezed) rejection sampling
	Bild 18: Adaptive rejection sampling
	Bild 19: Adaptive rejection sampling
	Bild 20: Composition sampling
	Bild 21: Composition sampling
	Bild 22: Ex. 5: Type I error of test under wrong distribution
	Bild 23: Ex. 5: Type I error of test under wrong distribution
	Bild 24: Ex. 5: Type I error of test under wrong distribution
	Bild 25: Ex. 5: Type I error of test under wrong distribution
	Bild 26: Ex. 5: Type I error of test under wrong distribution
	Bild 27
	Bild 28
	Bild 29
	Bild 30: Sampling importance resampling (SIR) – Illustration (Thanks to Yuliya Leontyeva for code and illustration on this slide!)
	Bild 31
	Bild 32: Markov chain Monte Carlo (MCMC), see GH 7.1, 7.3
	Bild 33: MCMC – Metropolis-Hastings algorithm
	Bild 34: Simulated annealing
	Bild 35: Simulated annealing and Metropolis algorithm
	Bild 36: Metropolis alg. – Ex.7
	Bild 37: Metropolis alg. – Ex.7
	Bild 38: Metropolis alg. – Ex.7
	Bild 39: Metropolis alg. – Ex.7
	Bild 40: Metropolis alg. – Ex.7
	Bild 41: Metropolis algorithm - Example 8
	Bild 42: Metropolis algorithm - Example 8
	Bild 43: Metropolis algorithm - Example 8
	Bild 44: Metropolis algorithm - Example 8
	Bild 45: Metropolis algorithm - Example 8
	Bild 46: Metropolis algorithm - Example 8
	Bild 47: Metropolis-Hastings with independent proposals
	Bild 48: Markov chain Monte Carlo

