Advanced computational statistics, lecture 6

Frank Miller, Department of Computer and Information Science, Linköping University
Department of Statistics; Stockholm University
May 16, 2023

Course schedule

- Topic 1: Gradient based optimisation
- Topic 2: Stochastic gradient based optimisation
- Topic 3: Gradient free optimisation
- Topic 4: Optimisation with constraints
- Topic 5: EM algorithm and bootstrap
- Topic 6: Simulation of random variables
- Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2023.html Includes schedule, reading material, lecture notes, assignments

Simulation in Statistics

- Computer-generated random variables
- Purpose:
- Simulate a situation where a statistical model can be assumed
- Simulate situation repeatedly to investigate properties of estimators, confidence intervals, significance tests
- Example: power of a test in situations where assumptions are not fulfilled
- Perform Monte Carlo integration
- Problem: Given a density f of a target distribution, generate random draws $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ which follow the target distribution

Random variables from familiar distributions

- Computer-generated random variables are not really random but deterministic (Gentle, Härdle, Mori, 2012, Ch.3)
- Algorithms are used such that the deterministic nature is not visible, and variables seem random
- Deterministic algorithm generates values between 0 and 1 which follow well independent draws from Unif[0,1]
- Then, random variables following other familiar distributions can be generated from Unif[0,1] and are implemented in statistical software, see Givens and Hoeting (2013), Tab. 6.1

Random variables of familiar distributions in R

- In R , random variables can be generated for a number of distributions, e.g:
- rbeta, rcauchy, rchisq, rexp, rf, rgamma, rlnorm, rnorm, rt, runif, rweibull
- rbinom, rgeom, rhyper, rmultinom, rnbinom, rpois
$\mathbf{x}<-\operatorname{rnorm}(6$, mean $=1.2, \operatorname{sd}=2)$
x
$\begin{array}{lllllll}{[1]} & 3.8839870 & 2.8328797 & 3.5344539 & -2.5464309 & 3.2059822 & 0.1872261\end{array}$
rbinom(25, size $=3$, prob $=0.25$)
[1] 12000002300211001011212100

Random variables from non-familiar distributions

- Problem: Given a density f of a target distribution, generate random draws $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ which follow the target distribution
- Now: Density f of arbitrary form
- Methods we will consider:
- Inverse transformation method
- Rejection sampling
- Composition sampling
- Sampling importance resampling (SIR)
- Markov chain Monte Carlo (MCMC)

Inverse transformation method

- Continuous random variable X with density f and distribution function F
- Then: $F(X)$ is uniformly distributed on $[0,1]$

- Therefore: if we can generate uniformly distributed random variables U, we can compute $X=F^{-1}(U)$ and obtain the desired sample

Inverse transformation method

- Example 1: We want to generate random variables X with triangle distribution having density

$$
f(x)=\left\{\begin{array}{cl}
2-2 x, & \text { if } 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- We compute the distribution function:

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\left\{\begin{array}{cc}
0, & \text { if } x<0 \\
2 x-x^{2}, & \text { if } 0 \leq x \leq 1 \\
1, & \text { if } x>1
\end{array}\right.
$$

- The inverse distribution function is

$$
\begin{aligned}
& F^{-1}(y)=1-\sqrt{1-y} \\
& \text { since } y=2 x-x^{2} \Leftrightarrow x^{2}-2 x+y=0 \Leftrightarrow \\
& \qquad x_{1,2}=1 \pm \sqrt{1-y} \Rightarrow 1-\sqrt{1-y}
\end{aligned}
$$

Inverse transformation method

- 1000 random numbers for the triangle distribution can be generated by:
$\mathrm{u}<-\operatorname{runif}(1000)$
$\mathbf{x}<-1-s q r t(1-u)$
hist(x)

Histogram of x

Inverse transformation - discrete random variables

- Example 2: We want to generate a random variable X being 0 with probability 0.35 , 1 with probability 0.05 , 2 with probability 0.4, 3 with probability 0.2

- $\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})$; how to apply inverse transformation method?

Inverse transformation - discrete random variables

- Example 2: We want to generate a random variable X being 0 with probability 0.35 , 1 with probability 0.05 , 2 with probability 0.4, 3 with probability 0.2
- How to apply inverse transformation method?

- Generate U~Unif[0,1]
- If $\mathrm{U} \leq 0.35$, then $\mathrm{X}=0$, if $0.35<\mathrm{U} \leq 0.4$, then $\mathrm{X}=1$,

This is 1 if the condition in (...) is true, otherwise it is o if $0.4<\mathrm{U} \leq 0.8$, then $\mathrm{X}=2$, if $0.8<\mathrm{U}$, then $\mathrm{X}=3$.
u <- runif(100000)
$x<-(u>0.35)+(u>0.4)+(u>0.8)$

Inverse transformation method

- Inverse transformation worked well in preceding examples
- In general, drawbacks are:
- Computation of F^{-1} might be difficult
- Not possible to generalize to multiple dimensions
- Often less efficient as alternatives

Rejection sampling

- Problem: Given a density f of a target distribution, generate random draws $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ which follow the target distribution
- It can be difficult to sample with respect to f
- Situation: There is another density g which can be sampled from and which is after scaling larger than f for all x,
$e(x)=g(x) / \alpha \geq f(x)$ for all x and some $\alpha<1$
- $e(x)$ is called "envelope"

Rejection sampling

- $e(x)=g(x) / \alpha \geq f(x)$ for all x and some $\alpha<1$
- Rejection sampling algorithm:

1. Sample $\mathrm{Y} \sim g$
2. Sample U~Unif(0,1)

3. If $\mathrm{U} \leq f(\mathrm{Y}) / e(\mathrm{Y})$, accept Y ; set $\mathrm{X}=\mathrm{Y}$; otherwise reject it
4. If more samples desired go to 1 .

Example (for picture above): $\mathrm{Y}=2.21 ; f(\mathrm{Y})=0.267, e(\mathrm{Y})=0.435$, $f(\mathrm{Y}) / e(\mathrm{Y})=0.616$; sample U ; If $\mathrm{U} \leq 0.616$, use Y , otherwise reject it

Rejection sampling

1. Sample $\mathrm{Y} \sim g=\mathrm{e} \alpha$
2. Sample U~Unif(0,1)

3. If more samples desired, go to 1

Example (for picture above):
$\left(\mathrm{Y}_{1}, \mathrm{U}_{1}\right)=(2.21,0.492) \rightarrow \mathrm{U}_{1}<0.616 \rightarrow$ accept Y_{1}
$\left(\mathrm{Y}_{2}, \mathrm{U}_{2}\right)=(0.17,0.952) \rightarrow \mathrm{U}_{2}>\mathrm{f}(0.17) / \mathrm{e}(\mathrm{o} .17) \rightarrow$ reject Y_{2}

$\left(\mathrm{Y}_{3}, \mathrm{U}_{3}\right)=(1.76,0.250) \rightarrow \mathrm{U}_{3}<\mathrm{f}(1.76) / \mathrm{e}(1.76) \rightarrow$ accept Y_{3} $\left(\mathrm{Y}_{4}, \mathrm{U}_{4}\right)=(1.55,0.880) \rightarrow \mathrm{U}_{4}>\mathrm{f}(1.55) / \mathrm{e}(1.55) \rightarrow$ reject Y_{4} $\left(\mathrm{Y}_{5}, \mathrm{U}_{5}\right)=(0.90,0.619) \rightarrow \mathrm{U}_{5}<\mathrm{f}(0.90) / \mathrm{e}(0.90) \rightarrow$ accept Y_{5}
\rightarrow use (2.21, 1.76, 0.90)

Squeezed rejection sampling

- $e(x)=g(x) / \alpha \geq f(x)$ for all x and some $\alpha<1$
- Squeezing function $s(x), s(x) \leq f(x)$
- Squeezed rejection sampling algorithm:

1. Sample $\mathrm{Y} \sim g$
2. Sample U~Unif(0,1)
3. If $U \leq s(Y) / e(Y)$, accept Y; set $X=Y$; go to 5

4. If $\mathrm{U} \leq f(\mathrm{Y}) / e(\mathrm{Y})$, accept Y ; set $\mathrm{X}=\mathrm{Y}$

X
5. If more samples desired go to 1 .

Example (for picture above): $\mathrm{Y}=0.90 ; \mathrm{s}(\mathrm{Y})=0.32, e(\mathrm{Y})=0.55, \mathrm{~s}(\mathrm{Y}) / e(\mathrm{Y})=0.582$; sample U; If $\mathrm{U}<0.582$, use Y , otherwise compute $f(\mathrm{Y})=0.479, \mathrm{f}(\mathrm{Y}) / \mathrm{e}(\mathrm{Y})=0.871$, and use Y if $U<0.871$, otherwise reject

Adaptive (squeezed) rejection sampling

- An automated generation of envelope and squeezing functions can be good
- Adapt (improve) these functions where it is necessary
- Assumption: f log-concave, continuous, differentiable, $f>0$ on an interval I
- Start with grid $T_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$ of points on I; consider $h=\log (f)$
- The tangents of the concave h in x_{i} form an upper hull $e^{*}(x)$ of h, $\rightarrow e(x)=\exp \left(e^{*}(x)\right)$ is an envelope
- The interpolations between the x_{i} forms a lower hull $s^{*}(x)$ of h, $\rightarrow s(x)=\exp \left(s^{*}(x)\right)$ is a squeezing function
- If x was rejected or (in the case of squeezing) if x is accepted in Step 4 $[s(x) / e(x)<\mathrm{U} \leq f(x) / e(x)]$, then the point x is added to $T_{k} \rightarrow T_{k+1}$

Adaptive rejection sampling

- Example 3: $\mathrm{N}(\mathrm{o}, 1), f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right), T_{2}=\left\{x_{1}, x_{2}\right\}, \mathrm{x}_{2}=-\mathrm{x}_{1}=1.2$

Proportion of waste:
$1-1 / \int_{-\infty}^{\infty} e(x) d x$
Here: 1-1/1.366=0.268

Adaptive rejection sampling

- An adaptive rejection sampling version exists which does not require the derivative of h (secants instead of tangents are used, see Givens and Hoeting (2013; Chapter 6.2.3.2)
- Adaptive rejection sampling can be used for multidimensional cases, for example as subroutine in Gibbs sampling
- Many densities are log-concave, but some are not; non-log-concave densities can be handled by combining it with a Metropolis step

Composition sampling

- A finite mixture distribution can be generated by:
- simulating the group-membership using the discrete distribution for mixing parameters
- simulating the distribution of this group's distribution
- See Gentle, Härdle, Mori (2012), Section 3.8.7
- Ex. 4: X normal mixture of $\mathrm{N}(0,1)$ and $\mathrm{N}\left(4,1.5^{2}\right)$ with mixing parameter 0.7 and 0.3 , respectively

```
g <- rbinom(100000, size = 1, prob = 0.3)
x <- rnorm(100000, mean = 4*g, sd = 1+0.5*g)
hist(x, breaks = 25)
```


Composition sampling

- More flexible code for simulating a finite mixture distribution (e.g., a finite normal mixture) with composition sampling:
- Define mean, standard deviations and mixing parameters as vector:

```
mu <- c(-2, 5, 11)
sigma <- c(2.2, 1.4, 2.9)
prob <- c(0.4, 0.25, 0.35)
n <- 10000
```

- Generate mixture by:

```
g <- sample(length(mu), n, replace=TRUE, p=prob)
x <- rnorm(n, mean = mu[g], sd = sigma[g])
hist(x, breaks = 25)
```


Ex. 5: Type I error of test under wrong distribution

- Given n independent and identically distributed observations $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ with mean μ, one can test $\mathrm{H}_{0}: \mu=0$ versus $\mathrm{H}_{1}: \mu>0$ with the one-sample t-test

$$
\text { reject } H_{0} \text { if and only if } \frac{\sqrt{n} \bar{x}}{s_{x}}>t_{n-1 ; 1-\alpha}
$$

- Assumption for test: normal distribution of observations
- How sensitive is t-test if observations not normal?
- We focus on H_{o} first: Can type I error be larger than α (such that it matters) for certain distributions?
- Idea:
- Choose some distributions with mean=0, simulate n repetitions, perform t-test, and record if rejected
- Repeat this s times and check rejection rate

Ex. 5: Type I error of test under wrong distribution

- For $\mathrm{n}=10$, simulate rejection rate for Unif[-1,1] \#Simulation of one sample t-test
s <- 100000
n <- 10
count <- 0
for (sim in 1:s)
\mathfrak{f}
$\mathbf{x}<-\operatorname{runif}(\mathrm{n}, \min =-1$, max $=1$)
reject <- (t.test(x, alternative = "greater") \$p.value < 0.05)
count <- count + reject
\}
\#Rejection rate estimate:
rre <- count/s

This is 1 if the condition in (...) is true, otherwise it is o

- Note that there are possibilities to make simulation more efficient (e.g., by avoiding the loop) - see code on homepage

Ex. 5: Type I error of test under wrong distribution

```
s <- 100000
n <- 10
count <- 0
for (sim in 1:s)
{
    x <- runif(n, min = -1, max = 1)
    reject <- (t.test(x, alternative = "greater")$p.value < 0.05)
    count <- count + reject
}
rre <- count/s
```

- Precision of result?
$\mathrm{p}=$ true rejection rate; reject $\sim \operatorname{Bin}(1, p)$, count $\sim \operatorname{Bin}(s=100000, p)$

$$
\begin{aligned}
& \operatorname{Var}(\mathrm{count})=p(1-p) s, \operatorname{Var}\left(\frac{\mathrm{count}}{s}\right)=\frac{p(1-p)}{s}, s d(\mathrm{rre})=\sqrt{\frac{p(1-p)}{s}} \\
& \approx 0.0007 \text { for } p=0.05 .
\end{aligned}
$$

Ex. 5: Type I error of test under wrong distribution

- Simulated rejection rate for Unif[-1,1] for $\mathrm{n}=4,5, \ldots, 20$ with 95%-simulation-errorCIs based on 100000 sim. for each n
- One more loop for n used
- Took ~1 min to simulate
t-test for uniformly distributed observations

Ex. 5: Type I error of test under wrong distribution

- Again, rejection rate for $\mathrm{n}=10$, but for:
a) An equal mixture of $N(-2,1)$ and $N(2,1)$,
b) Distribution with density: $\mathrm{f}(\mathrm{x})=\mathrm{c} \exp \left(-\mathrm{x}^{4}\right)$,
c) Distribution with density: $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-(\mathrm{x}-1)} \mathbf{1}_{\{\mathrm{x}>-1\}}$ Which simulation method in each case?

Sampling importance resampling [SIR]

- Methods considered so far generate intended distribution exactly
- Sampling importance resampling (SIR) is approximate method (this approximation is often fully ok)
- Use again envelope-function g, but do not longer require the envelope being larger than f everywhere
- If desired to draw n observations following f, start with sampling m independent observations following g (recommendation: $\mathrm{m} \geq 10 \mathrm{n}$)
- Resample then n from these m as described below

Sampling importance resampling [SIR]

1. Sample $m(\geq 10 n)$ random variables Y_{1}, \ldots, Y_{m} from g
2. Calculate standardized importance weights

$$
w\left(Y_{i}\right)=\frac{f\left(Y_{i}\right) / g\left(Y_{i}\right)}{\sum_{j=1}^{m} f\left(Y_{j}\right) / g\left(Y_{j}\right)}
$$

for all m random draws Y_{i} from g.
3. Resample $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ from $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{m}}$ with replacement with probabilities $w\left(Y_{1}\right), \ldots, w\left(Y_{m}\right)$

- $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ follow then approximately f
- Note: f need to be known only up to a constant (constant cancels out in calculation of standardized weights)

The slash distribution

- A random variable Y has slash distribution if $\mathrm{Y}=\mathrm{X} / \mathrm{U}$ with $\mathrm{X} \sim \mathrm{N}(0,1)$ and $\mathrm{U} \sim \operatorname{Unif}(0,1)$ independently

Densities

Sampling importance resampling (SIR] - Illustration

(Thanks to Yuliya Leontyeva for code and illustration on this slide!)

- Example 6: Use slash distribution as SIR envelope g to generate random variables following standard normal density f

```
library("extraDistr") # used for computation of slash
    # density and simulation
sir <- function(m, n)
{
    # m - sample size from the envelope distribution
    # n - resample size
    # relative to n, m should be large
    Y <- rslash(m) # sample candidates Y1,...Ym iid from g
    w <- dnorm(y)/dslash(y)
    w <- w/sum(w) # calculate the standardized weights
    x <- sample(y, n, replace=TRUE, prob=w) # resample with
                            # probabilities = w
    return(x)
}
x <- sir(100000, 5000)
```


The simulated data follows well a normal distribution

LINKÖPING
UNIVERSITY

Sampling importance resampling (SIR) - illustration

- Method worked well since envelope (slash distribution) had heavier tails than target distribution (standard normal)
- If we run SIR to generate the slash distribution with standard normal as envelope, no observations are generated at tails
- Lowest and highest values in Y-sample receive high weights (overrepresentation in X-sample)
- Recommendation: Use envelopes with heavier tails (or equally heavy) than the target distribution

Markov chain Monte Carlo (MCMC), see GH 7.1, 7.3

- The algorithms considered so far generate sequences of independent observations which follow the target distribution exactly or approximately (sampling importance resampling)
- We will now consider a method which generates a sequence of dependent observations which follow the target distribution approximately
- The next observation ($\mathrm{t}+1$) will be generated based on a proposal distribution g which depends on the current observation (t), i.e. $g\left(\cdot \mid \mathrm{X}^{(\mathrm{t})}\right)$
- Since $X^{(t+1)}$ depends on $X^{(t)}$ but not on earlier observations, the sequence $\left(\mathrm{X}^{(t)}\right)$ is a Markov chain

MCMC - Metropolis-Hastings algorithm

- A general method to generate the Markov chain is the Metropolis-Hastings (MH) algorithm
- A starting value $\mathrm{x}^{(0)}$ is generated from some starting distribution
- Given observation $x^{(t)}$, generate $\mathrm{x}^{(\mathrm{t}+1)}$ as follows:

1. Sample a candidate x^{*} from a proposal distribution $g\left(\cdot \mid \mathrm{x}^{(\mathrm{t})}\right)$
2. Compute the MH ratio $R\left(x^{(t)}, x^{*}\right)=\frac{f\left(x^{*}\right) g\left(x^{(t)} \mid x^{*}\right)}{f\left(x^{(t)}\right) g\left(x^{*} \mid x^{(t)}\right)}$
3. Sample $\mathrm{x}^{(\mathrm{t}+1)}$ according to

Metropolis algorithm Special case when g is symmetric: $g\left(\mathrm{x}^{*} \mid \mathrm{x}^{(\mathrm{t})}\right)=g\left(\mathrm{x}^{(\mathrm{t})} \mid \mathrm{x}^{*}\right)$ $=\frac{f\left(x^{*}\right)}{f\left(x^{(t)}\right)}$

$$
x^{(t+1)}=\left\{\begin{array}{l}
x^{*}, \text { with probability } \min \left\{R\left(x^{(t)}, x^{*}\right), 1\right\} \\
x^{(t)}, \text { otherwise }
\end{array}\right.
$$

4. If more observations needed, set $\mathrm{t}<-\mathrm{t}+1$; go to 1

Simulated annealing

- Start value $\mathrm{x}^{(0)}$; Stage $\mathrm{j}=0,1,2, \ldots$ has m_{j} iterations; set $\mathrm{j}=\mathbf{0}$
- Given iteration $\mathrm{x}^{(\mathrm{t})}$, generate $\mathrm{x}^{(\mathrm{t}+1)}$ as follows:

1. Sample a candidate x^{*} from a proposal distribution $\mathrm{p}\left(\cdot \mid \mathrm{x}^{(\mathrm{t})}\right)$
2. Compute $h\left(x^{(t)}, x^{*}\right)=\exp \left(\frac{g\left(x^{*}\right)-g\left(x^{(t)}\right)}{\tau_{j}}\right)$

$$
\begin{array}{|l|}
\hline g\left(x^{(t)}\right)-g\left(x^{*}\right) \\
\text { for } \\
\text { minimisation } \\
\hline
\end{array}
$$

3. Define next iteration $\mathrm{x}^{(t+1)}$ according to

$$
x^{(t+1)}=\left\{\begin{array}{l}
x^{*}, \text { with probability } \min \left\{h\left(x^{(t)}, x^{*}\right), 1\right\} \\
x^{(t)}, \text { otherwise }
\end{array}\right.
$$

4. Set $\mathrm{t}<-\mathrm{t}+1$ and repeat 1.-3. m_{j} times
5. Update $\tau_{j}=\alpha\left(\tau_{j-1}\right)$ and $m_{j}=\beta\left(m_{j-1}\right)$; set $\mathbf{j}<-\mathbf{j}+1$; go to 1
τ_{j} is temperature; function α should slowly decrease it; function β should be increasing

Simulatea annealing and Metronolis algorithm

- For fixed temperature τ, simulated annealing algorithm is a Metropolis algorithm
- Kirkpatrick et al. (1983) proposed name simulated annealing for using it as optimisation method
- $h\left(x^{(t)}, x^{*}\right)=\exp \left(\frac{g\left(x^{(t)}\right)-g\left(x^{*}\right)}{\tau_{j}}\right)=\frac{\exp \left(-\frac{g\left(x^{*}\right)}{\tau_{j}}\right)}{\exp \left(-\frac{g\left(x^{(t)}\right)}{\tau_{j}}\right)}=\frac{f\left(x^{*}\right)}{f\left(x^{(t)}\right)}=R\left(x^{(t)}, x^{*}\right)$
- Key ingredient of Metropolis and simulated annealing alg.: Markov chain $\boldsymbol{x}^{(t)}$ has limiting stationary distribution \boldsymbol{f}; for a proof see e.g. Koski (2009)
- Requirement for all: $x^{(t)}$ irreducible and aperiodic chain

Metropolis alg. - Ex. 7

- For illustration, we consider two-dimensional distribution with density f according to contour lines in figure (extended example from $\mathbf{L 3}$)
- Proposal distribution
$g\left(\mathrm{x}^{*} \mid \mathrm{x}^{(\mathrm{t})}\right)=g\left(\mathrm{x}^{(\mathrm{t})} \mid \mathrm{x}^{*}\right)$
$=\frac{1}{\pi r^{2}} \mathbf{1}\left\{\left\|x^{(t)}-x^{*}\right\|<r\right\}$
for some constant r (here=1)

- Proposal distribution $g\left(\mathrm{x}^{*} \mid \mathrm{x}^{(\mathrm{t})}\right)=g\left(\mathrm{x}^{(\mathrm{t})} \mid \mathrm{x}^{*}\right)$
$=\frac{1}{\pi r^{2}} \mathbf{1}\left\{\left\|x^{(t)}-x^{*}\right\|<r\right\}$
for some constant r (here=1)
- Start here with $\mathrm{x}^{(0)}=(1,-0.5)$
- Randomize uniformly on unit circle around $\mathrm{x}^{(0)}$ (proposal

Metropolis alg. - Ex. 7

 distribution); result $x^{*}=(0.58,0.08)$- $\mathrm{f}\left(\mathrm{x}^{*}\right)=0.296>\mathrm{f}\left(\mathrm{x}^{(0)}\right)=0.098$; so this was an uphill step and is automatically accepted $\left(R\left(x^{(t)}, x^{*}\right)=\frac{f\left(x^{*}\right)}{f\left(x^{(t)}\right)}>1\right)$

Metropolis alg. - Ex. 7

- $\mathrm{X}^{(0)}=(1,-0.5)$
- Uphill steps: ${ }^{(1)}=(0.58,0.08)$
- $\mathrm{x}^{(2)}=(-0.33,0.13)$
- $\mathrm{x}^{(3)}=(-0.23,0.05)$
- Then downhill step proposed:

$$
\begin{aligned}
& \mathrm{x}^{*}=(-0.32,0.4), \\
& R\left(x^{(t)}, x^{*}\right)=\frac{\dot{f}}{}\left(x^{*}\right) \\
& f\left(x^{(t)}\right)
\end{aligned}=0.774
$$

- Random Unif(0,1) generated: 0.573 and
 since this is smaller than $R=0.774, \mathrm{x}^{(4)}=\mathrm{x}^{*}=(-0.32,0.4)$ is accepted
- Again downhill step proposed: $\mathrm{x}^{*}=(-0.67,1.31), R\left(x^{(t)}, x^{*}\right)=\frac{f\left(x^{*}\right)}{f\left(x^{(t)}\right)}=0.560$; random $\operatorname{Unif}(0,1): 0.890$ and rejection of x^{*}
- $\mathrm{x}^{(5)}=\mathrm{x}^{(4)}=(-0.32,0.4)$

- Since uphill steps preferred,

Metropolis alg. - Ex. 7

- After several additional iterations (see red lines for rejected proposals), one part of the distribution was explored to a good extend part of distribution with local maximum at (-0.5,-0.5) is not yet "detected" at all
- Occasionally, the path will arrive at this part as well

Metropolis alg. - Ex. 7

- Now, larger parts of distribution explored
- A couple of animations can be found on: https://chi-feng.github.io/mcmc-demo/app.html\#RandomWalkMH,standard (choose Algorithm: RandomWalkMH)

Metropolis algorithm - Example 8

(compare Givens and Hoeting, ex. 5.3)

- Consider Bayesian estimation of μ based on $\mathrm{N}\left(\mu, 3^{2} / 7\right)$ likelihood for μ and Cauchy $(5,2)$ prior; observed mean $=5.38$
- The posterior density is proportional to product of likelihood and prior density
- Use MCMC to generate random samples following the posterior density
- Based on these random samples, one can e.g.
- determine posterior probability that $2 \leq \mu \leq 8$
- determine mean and variance of posterior

Metropolis algorithm - Example 8

- We use starting value $\mathrm{x}^{(0)}=0, \mathrm{~s}=1000$ iterations and following proposal distributions $g\left(\cdot \mid \mathrm{x}^{(\mathrm{t})}\right)$:
$\mathrm{x}^{(\mathrm{t})}+$ Unif[-0.2,0.2], $\mathrm{x}^{(\mathrm{t})}+$ Unif[-1,1], $\mathrm{x}^{(\mathrm{t})}+$ Unif[-8,8]
- Sample path plots show simulated values $x^{(t)}$ vs. iteration number t

Metropolis algorithm - Example 8

Proposal dist.: Unif[$-0.2,0.2]$

Proposal dist.: Unif[-1, 1]

Proposal dist.: Unif[-8, 8]

- Count "acceptance rate" (=proportion accepted proposals)
- Here: 98\% 78\% 18\%
- Best results for 44% (uni-dim. case) to 23.4% (high dim. case) acceptance probability (theory based on normal target and proposal functions, see Givens and Hoeting, Chapter 7.3, for references about that)
- For multimodal functions lower acceptance probabilities might be good

Metropolis algorithm - Example 8

- Based on sample path plots, we might choose Unif[-1,1] as proposal distribution
- Often, one wants to discard initial samples (burn-in period) which highly depend on starting value, e.g. 50 values $+\mathrm{x}^{(0)}$

Histogram of samp[52:1001]

Metropolis algorithm - Example 8

- For $s=10000$ iterations and burn-in of 50 , we obtain

- Monte Carlo estimate for $\mathrm{P}(2 \leq \mu \leq 8)$ is 0.9967
(Monte Carlo standard error $=\sqrt{0.9967 * 0.0033 / 9950}=0.0006$)
- Estimated mean $=5.26$, standarddeviation $=0.99$

Metropolis algorithm - Example 8

- Were $s=10$ ooo iterations enough to ensure convergence?
- Can depend on the purpose ...
- E.g. for estimating $\mathrm{P}(2 \leq \mu \leq 8)$
- One can monitor cusum/convergence plots showing estimate versus iterations (see Givens and Hoeting, ch.7.3.1.1)
- After 10 ooo iterations

After 100000 iterations

- After 10 ooo iterations, we might not be happy with the left graph; we run longer and are happy with 100000

Metropolis-Hastings with independent proposals

- Other proposal distributions g possible (not necessarily symmetric), e.g. independent proposals
- Proposal distribution depends not on previous value, $g\left(\cdot \mid \mathrm{x}^{(\mathrm{t})}\right)=g(\cdot)$
- The MH ratio is $R\left(x^{(t)}, x^{*}\right)=\frac{f\left(x^{*}\right) g\left(x^{(t)} \mid x^{*}\right)}{f\left(x^{(t)}\right) g\left(x^{*} \mid x^{(t)}\right)}=\frac{f\left(x^{*}\right) / g\left(x^{*}\right)}{f\left(x^{(t)}\right) / g\left(x^{(t)}\right)}$
- A possible application is for Bayesian analysis (f is the posterior) with proposal distribution g being the prior distribution
- f / g is then the likelihood

Markov chain Monte Carlo

- In Givens and Hoeting (2013), Chapter 7 and 8, more about Markov chain Monte Carlo algorithms

