Advanced computational statistics, lecture 7

Frank Miller, Department of Computer and Information Science, Linköping University
Department of Statistics; Stockholm University
May 17, 2023

Course schedule

- Topic 1: Gradient based optimisation
- Topic 2: Stochastic gradient based optimisation
- Topic 3: Gradient free optimisation
- Topic 4: Optimisation with constraints
- Topic 5: EM algorithm and bootstrap
- Topic 6: Simulation of random variables
- Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2023.html Includes schedule, reading material, lecture notes, assignments

Today's schedule

- Numerical integration
- Newton-Côtes rules
- Gaussian quadrature
- Importance sampling
- Antithetic sampling
- Combining importance and antithetic sampling

Integration in Statistics

- Expected value: $E(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x$
- Variance: $\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-E(X))^{2} \cdot f(x) d x$
- Probabilities for distributions with given density:

$$
P(X \leq y)=\int_{-\infty}^{y} f(x) d x
$$

- The likelihood function might be an integral, e.g. in mixed effect models like in the Alzheimer's example by Givens and Hoeting, ch.5:

$$
L\left(\beta, \sigma_{\gamma}^{2} \mid y\right)=\prod_{i=1}^{22} \int\left[\phi\left(\gamma_{i} ; 0, \sigma_{\gamma}^{2}\right) \prod_{j=1}^{5} f\left(y_{i j} \mid \lambda_{i j}\right)\right] d \gamma_{i}
$$

where ϕ is normal density and f Poisson density

Integration in Statistics

- Analytical integration (in rare cases...)
- Numerical integration (Evaluation of integrant at a finite number of points and compute weighted sum)
- Using Monte Carlo methods

One-dimensional numerical integration

- Computation of $\int_{a}^{b} f(x) d x$
- Divide first $[\mathrm{a}, \mathrm{b}]$ into n subintervals $\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right], \mathrm{i}=\mathrm{o}, \ldots, \mathrm{n}-1\left(\mathrm{a}=\mathrm{x}_{\mathrm{o}}, \mathrm{b}=\mathrm{x}_{\mathrm{n}}\right)$; then $\int_{a}^{b} f(x) d x=\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) d x$
- Use a "simple rule" by choosing m+1 nodes $x_{i j}^{*}$ in $\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right]$ and approximate $\int_{x_{i}}^{x_{i+1}} f(x) d x \approx \sum_{j=0}^{m} A_{i j} f\left(x_{i j}^{*}\right)$

Newton-Côtes rules

- Computation of $\int_{x_{i}}^{x_{i+1}} f(x) d x$ by $\sum_{j=0}^{m} A_{i j} f\left(x_{i j}^{*}\right)$
- $\mathrm{m}+1$ equally spaced nodes $x_{i j}^{*}$ in $\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right]$
- Riemann rule ($\mathrm{m}=\mathrm{o}$): $x_{i 0}^{*}=x_{i}, A_{i 0}=\left(x_{i+1}-x_{i}\right)$
- Trapezoidal rule (m=1): $x_{i 0}^{*}=x_{i}, x_{i 1}^{*}=x_{i+1}, A_{i 0}=A_{i 1}=\frac{x_{i+1}-x_{i}}{2}$
- Simpson's rule (m=2): $x_{i 0}^{*}=x_{i}, x_{i 1}^{*}=\frac{x_{i}+x_{i+1}}{2}, x_{i 2}^{*}=x_{i+1}$,

$$
A_{i 0}=A_{i 2}=\frac{x_{i+1}-x_{i}}{6}, A_{i 1}=4 \cdot \frac{x_{i+1}-x_{i}}{6}
$$

- Compare Givens and Hoeting, Figure 5.2

Newton-Côtes rules: Trapezoidal rule

- Computation of $\int_{a}^{b} f(x) d x$
- We use equally spaced x_{i}, i.e. $x_{i}=i h+a, h=\frac{b-a}{n}$
- Then the trapezoidal rule becomes: $\int_{a}^{b} f(x) d x \approx \frac{h}{2} f(a)+h \sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{{ }_{2}^{2}}{h} f(b)$

Trapezoidal rule: Example

- X standard normal distributed
- Compute $\mathrm{P}(-1.5<\mathrm{X}<1.5)=\int_{-1.5}^{1.5} \varphi(x) d x$ with $\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ using the trapezoidal method

- $\mathrm{n}=4: \int_{-1.5}^{1.5} \varphi(x) d x \approx \frac{3}{4}\left(\frac{\varphi(-1.5)}{2}+\varphi(-0.75)+\varphi(0)+\varphi(0.75)+\frac{\varphi(1.5)}{2}\right)$ $=\frac{3}{4}(0.1295 / 2+0.3011+0.3989+0.3011+0.1295 / 2)=0.8481$
- Iterative application of the trapezoidal rule:
- To obtain in a next step a better approximation, use $\mathrm{n}=8$, compute additionally $\varphi(-1.125), \varphi(-0.375), \varphi(0.375), \varphi(1.125)$, and $\frac{3}{8} \frac{(\varphi(-1.5)}{2}+\varphi(-1.125)+\varphi(-0.75)+$ $\left.\cdots+\varphi(1.125)+\frac{\varphi(1.5)}{2}\right)$
- Do this until stopping criterion met
- A relative stopping criterion is reasonable here

Trapezoidal rule: Example

- With a relative stopping criterion $\mathrm{cc}=\left|\frac{\text { Integral }}{\text { Integral-old }}-1\right|<10^{-6}$, we obtain following approximations of the integral:

```
nodes integr-ap log_10(cc)
            4 0.8480511
            8 0.8618243-1.7893847 \longleftarrow This means that cc = 100
        16 0.8652468 -2.4010844
        32 0.8661010 -3.0055700
        64 0.8663144 -3.6082363
    128 0.8663678 -4.2104480
    256 0.8663812 -4.8125460
    512 0.8663845 -5.4146154
1024 0.8663853 -6.0166778
```

- Using pnorm-function:
pnorm(1.5) - pnorm(-1.5) $=0.8663856$

Iterative application of trapezoidal rule

$$
\begin{aligned}
& \mathrm{n}=4 \quad \mathrm{x}_{0}^{(0)} \quad x_{1}^{(0)} \quad x_{2}^{0} \quad x_{3}^{(0)} \quad x_{4}^{(0)} \\
& \mathrm{n}=8 \quad 0_{0}^{(1)} \quad x_{1}^{(1)} \quad x_{2}^{(1)} \quad x_{3}^{(1)} \quad x_{4}^{(1)} \quad x_{5}^{(1)} \quad x_{6}^{(1)} \quad x_{7}^{(1)} \quad x_{8}^{(1)} \\
& \mathrm{n}=16 \\
& x_{0}^{(2)} x_{1}^{(2)} \\
& x_{16}^{(2)}
\end{aligned}
$$

- Faster if one reuses already computed values for next iteration

Gaussian quadrature

- Newton-Côtes rules based on equidistant nodes
- Gaussian quadrature uses idea that it might be better to be more flexible and allow arbitrary distances between nodes x_{i} and corresponding weights A_{i} to compute

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{m} A_{i} f\left(x_{i}\right)
$$

- Gaussian quadrature is defined for given weight function $\mathrm{w}(\mathrm{x})$

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{i=0}^{m} A_{i} f\left(x_{i}\right)
$$

- For $w(x)=e^{-x^{2}}$: "Gauss-Hermite" (note: Givens and Hoeting use Gauss-Hermite with $w(x)=e^{-x^{2} / 2}$)

Gauss-Hermite quadrature

- Gauss-Hermite quadrature uses $w(x)=e^{-x^{2}}$ and can integrate from $-\infty$ to $+\infty$.
- E.g. for $\mathrm{m}+1=7$ nodes, x_{i} and A_{i} are in following table:

x_{i}	-2.652	-1.674	-0.816	0	0.816	1.674	2.652
\mathbf{A}_{i}	0.001	0.055	0.426	0.810	0.426	0.055	0.001

- Given a function $f(\mathrm{x})$ and $f^{*}(\mathrm{x})=f(\mathrm{x}) / \mathrm{w}(\mathrm{x})$, we approximate the integral by

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} f^{*}(x) w(x) d x \approx \sum_{i=0}^{6} A_{i} f^{*}\left(x_{i}\right)
$$

Gauss-Hermite quadrature - Example

\mathbf{x}_{i}	-2.652	-1.674	-0.816	0	0.816	1.674	2.652
\mathbf{A}_{i}	0.001	0.055	0.426	0.810	0.426	0.055	0.001

- $f^{*}(\mathrm{x})=f(\mathrm{x}) / \mathrm{w}(\mathrm{x}), \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} f^{*}(x) w(x) d x \approx \sum_{i=0}^{6} A_{i} f^{*}\left(x_{i}\right)$ with $w(x)=e^{-x^{2}}$
- Example: $f(x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}}$: Compute numerically integral from $-\infty$ to $+\infty$ with Gauss-Hermite and $\mathrm{m}=6$ (we know that this should be 1 since this is the density of normal distribution with variance $=1 / 2$)
$\cdot \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} w(x) d x \approx \frac{1}{\sqrt{\pi}} \sum_{i=0}^{6} A_{i} \approx \frac{1}{\sqrt{\pi}} 1.772454 \approx 1,000000$

Adaptive quadrature and dimension of integrant

- Adaptive quadrature can introduce more points depending on the local behavior of f : in regions where the integral approximation is not yet stable (e.g. since f has a large change), more nodes might be added
- The R-function integrate uses adaptive Gaussian quadrature
- The algorithms discussed work in general well for one-dimensional cases
- For 2d or maybe 3d problems, they might be applied iteratively
- Curse of dimensionality: runtime growing exponentially with dimension
- For higher dimension, Monte Carlo integration often preferable

Monte Carlo estimator / MC integration

- In L6, we have generated $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ from a target distribution f
- A main use of these random draws is Monte Carlo integration:

Calculate $\int f(x) d x$ or, more general, $\int h(x) f(x) d x$

- A Monte Carlo estimator of $\int h(x) f(x) d x$ is:

$$
\hat{\mu}_{M C}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)
$$

- If $h(\mathrm{x})=\mathrm{x}$, we estimate the distribution's mean with $\hat{\mu}_{M C}=\bar{X}$
- If $h(\mathrm{x})=(\mathrm{x}-\bar{X})^{2}$, we estimate the distribution's variance
- If $h(x)=\mathbf{1}\{x>c\}$, we estimate probability to be $>c$, e.g. a rejection probability: $\int_{-\infty}^{\infty} h(x) f(x) d x=\int_{c}^{\infty} f(x) d x=P(X>c)$ (see t-test simulation example in L6 and following example)

Example: Monte Carlo integration

- Background: Clinical study with two significance tests
- n_{1} patients treated with high dose of a drug, n_{2} with low dose, n_{P} with placebo; high dose compared to placebo $\left(\mathrm{Z}_{1}\right)$ and low dose compared to placebo $\left(\mathrm{Z}_{2}\right)$

Test 1: Reject $\mathrm{H}_{\mathrm{o} 1}$ if $\mathrm{Z}_{1}>\mathrm{c}$
Test 2: Reject $\mathrm{H}_{\mathrm{o} 2}$ if $\mathrm{Z}_{2}>\mathrm{c}$

- Let Z_{1} and Z_{2} be standard normal distributed test statistics
- If c chosen conventionally, $\mathrm{c}=1.96$ for $\alpha=0.025, \mathrm{P}\left(\mathrm{Z}_{1}>\mathrm{c}\right)=\mathrm{P}\left(\mathrm{Z}_{2}>\mathrm{c}\right)=0.025$
- In this context, desired to control FamilyWise Error Rate (FWER) $\mathrm{P}\left(\mathrm{Z}_{1}>\mathrm{c}\right.$ or $\left.\mathrm{Z}_{2}>\mathrm{c}\right)$ (reject any of the two)
- Z_{1} and Z_{2} are correlated

Example: Monte Carlo integration

- We have $Z=\binom{Z_{1}}{Z_{2}} \sim N\left(\binom{0}{0},\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)\right)$ (multivariate normal) and want to determine c such that $\mathrm{P}\left(\mathrm{Z}_{1}>\mathrm{c}\right.$ or $\left.\mathrm{Z}_{2}>\mathrm{c}\right)=\alpha$
- Sample from multivariate normal
- Determine Monte Carlo integral estimate for $\mathrm{P}\left(\mathrm{Z}_{1}>\mathrm{c}\right.$ or $\left.\mathrm{Z}_{2}>\mathrm{c}\right)$ for arbitrary c
- Search then c such that $\mathrm{P}\left(\mathrm{Z}_{1}>\mathrm{c}\right.$ or $\left.\mathrm{Z}_{2}>\mathrm{c}\right)=\alpha$ by bisection or sorting $\max \left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)$ and taking 97.5\%-percentile for $\alpha=2.5 \%$
- With $h\left(x_{1}, x_{2}\right)=\mathbf{1}\left\{x_{1}>c\right.$ or $\left.x_{2}>c\right\}=\mathbf{1}\left\{\max \left\{x_{1}, x_{2}\right\}>c\right\}$ we have

$$
\int_{\mathbb{R}^{2}} h(\boldsymbol{x}) f(\boldsymbol{x}) d \boldsymbol{x}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=P\left(Z_{1}>c \text { or } Z_{2}>c\right)
$$

Example: Monte Carlo integration

- 10000 random draws of bivariate normal with $\rho=0.5$
- For $\mathrm{c}=2.21$ are 2.5% of draws upper and right to the red lines
- FWER is controlled at $\alpha=2.5 \%$, if we reject any of H_{oi} for $\mathrm{Z}_{\mathrm{i}}>2.21$

Example: Monte Carlo integration

- R program to derive critical value based on Monte Carlo:

```
n <- 1e+4
rho <- 0.5
x <- matrix(rnorm(2*n), ncol = 2)
y <- cbind(x[,1], rho * x[,1] + sqrt(1-rho^2) * x[,2]) #Multiv. normal
ym <- apply(y, 1, max) #Row-wise maximum
yms <- sort(ym)
cv <- yms[round(n*0.975)] #Pick 97.5%-percentile in sample as critical value
cv
```

- Function qmvnorm in package mvtnorm can calculate/ simulate this value, too:
library (mvtnorm)
qmvnorm(0.975, tail = "lower.tail",

```
    corr = matrix(c(1,0.5,0.5,1), ncol = 2))
```


Importance sampling

- A Monte Carlo estimator of $\int h(x) f(x) d x$ is

$$
\hat{\mu}_{M C}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)
$$

- Depending on h, not all X_{i} equally relevant for this estimate
- We might want to focus more on certain X_{i} and with this derive an alternative Monte Carlo based estimator with reduced variance
- Idea:
- Since $\int h(x) f(x) d x=\int h(x) \frac{f(x)}{g(x)} g(x) d x$, sample according to another density g which focuses on the important part of the sampling region
- Correct estimate by weighting according to $\frac{f(x)}{g(x)}$

Importance sampling

- A Monte Carlo estimator of $\int h(x) f(x) d x=\int h(x) \frac{f(x)}{g(x)} g(x) d x$ is

$$
\hat{\mu}_{M C}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)
$$

- Importance sampling:
- Choose g focusing on important regions (aiming for $g>f$ there, elsewhere $g<f$)
- Sample according to g
- Calculate $\hat{\mu}_{I S}^{*}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right) w^{*}\left(X_{i}\right)$ with weights $w^{*}\left(X_{i}\right)=\frac{f\left(X_{i}\right)}{g\left(X_{i}\right)}$
- Important that it is possible to evaluate f and g and easy to sample from g

Importance sampling

- $\hat{\mu}_{I S}^{*}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right) w^{*}\left(X_{i}\right)$ with weights $w^{*}\left(X_{i}\right)=\frac{f\left(X_{i}\right)}{g\left(X_{i}\right)}$
$\left(\hat{\mu}_{I S}^{*}\right.$ is the sample mean of $\left.t\left(X_{i}\right)=h\left(X_{i}\right) w^{*}\left(X_{i}\right), i=1, \ldots, n\right)$
- $\hat{\mu}_{I S}^{*}$ is an unbiased estimator of $\mu=\int h(x) f(x) d x$
- The variance of $\hat{\mu}_{I S}^{*}$ is $\frac{\sigma_{I S *}^{2}}{n}$ with $\sigma_{I S *}^{2}=\int\left(h(x) w^{*}(x)-\mu\right)^{2} g(x) d x$ (see Givens and Hoeting or Owen, Theorem 9.1)
\rightarrow an estimator for variance of $\hat{\mu}_{I S}^{*}$ is $\frac{1}{n}$ times sample variance of

$$
t\left(X_{i}\right)=h\left(X_{i}\right) w^{*}\left(X_{i}\right), i=1, \ldots, n
$$

Importance sampling - network analysis

- Network analysis: failure probabilities can be extremely small \rightarrow Importance sampling can be useful (Givens and Hoeting, example 6.9):
- A network consists of nodes and edges (visualized by circles and lines)

- Each edge is intact with high probability but has a failure probability p_{i} which typically is small
- Whole network intact if endnode B reachable from startnode A via intact edges, broken otherwise

Importance sampling - network analysis

- Run n times:
- Simulate each edge (if intact or broken)
- Compute whether network intact or broken
- Problem: Only a few networks will be broken
- To decrease variance of estimator, simulate with failure-probabilities $p_{i}^{*}>p_{i}$ and use $\hat{\mu}_{I S}^{*}$

Importance sampling - network example

- Example:

- Assume that $p_{i}=0.05$ for all edges
- A function net computes if the network is intact (net $(x)=1$) or broken ($\operatorname{net}(x)=0)$ for vector of edge-states $x=\left(x_{1}, \ldots, x_{11}\right)$
- To decrease variance of estimator, simulate with failure-probabilities $p_{i}^{*}>p_{i}$ and use $\hat{\mu}_{I S}^{*}$
- We use here $p_{i}{ }^{*}=0.3$

Importance sampling - network example

```
sim <- 100000
totaledges <- 11
p <- 0.05
ps <- 0.3
simmat <- matrix(rbinom(sim*totaledges, size=1, prob=1-ps), ncol=totaledges)
broken <- 1-apply(simmat, 1, net)
nbrokenedg <- totaledges - rowSums(simmat)
w <- dbinom(nbrokenedg, size=totaledges, prob=p) /
    dbinom(nbrokenedg, size=totaledges, prob=ps)
#The following formula gives same importance weights ((6.48) in GH, 2013):
#w2 <- ((1-p)/(1-ps))^totaledges * (p*(1-ps)/(ps*(1-p)))^nbrokenedg
bhatIS <- mean (broken*w)
```

- We get here an estimate $\hat{\mu}_{I S}^{*}=0.000781$
- sd is 0.0000165 obtained by sqrt (var (broken*w) /sim)
- sd is lower by factor 5.9 compared to standard Monte Carlo estimate based on same number of simulations

Antithetic sampling

- Given a Monte Carlo estimator $\hat{\mu}_{M C 1}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)$, there might be another $\hat{\mu}_{M C 2}$ which has same distribution and is negatively correlated (let $\left.\rho=\operatorname{Corr}\left(\hat{\mu}_{M C 1}, \hat{\mu}_{M C 2}\right)\right)$
- Then, $\hat{\mu}_{A S}=\left(\hat{\mu}_{M C 1}+\hat{\mu}_{M C 2}\right) / 2$ is an estimator for same target variable and has lower variance (factor $\frac{1+\rho}{2}$ lower)
- Example: Let X be a symmetric random var. with mean 0 . Interest in calculating $\mathrm{p}=\mathrm{P}(\mathrm{X}>1)$ by Monte Carlo sim.
- Use $\hat{\mu}_{M C 1}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)$ with $h\left(X_{i}\right)=\mathbf{1}\left\{X_{i}>1\right\}$
- The same distribution has $\hat{\mu}_{M C 2}=\frac{1}{n} \sum_{i=1}^{n} \tilde{h}\left(X_{i}\right)$ with $\tilde{h}\left(X_{i}\right)=\mathbf{1}\left\{X_{i}<-1\right\}$ (due to symmetry) and they are negatively correlated, $\rho=-p /(1-p)$

Importance and antithetic sampling - an example

- Example: Let X be a symmetric random var. with complicated density f and calculate $p=\mathrm{P}(\mathrm{X}>1)$ by Monte Carlo simulation
- Use $\hat{\mu}_{M C 1}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)$ with $h\left(X_{i}\right)=\mathbf{1}\left\{X_{i}>1\right\}$
- $\hat{\mu}_{M C 2}=\frac{1}{n} \sum_{i=1}^{n} \tilde{h}\left(X_{i}\right)$ with $\tilde{h}\left(X_{i}\right)=\mathbf{1}\left\{X_{i}<-1\right\}$ has the same distribution
- So, we compute $2 p=\mathrm{P}(|\mathrm{X}|>1)$ and will use importance sampling for it

Importance and antithetic sampling - an example

- For importance sampling, we want to oversample important regions and undersample otherwise
- We use here a normal distribution with standarddeviation 2 as sampling distribution g
- The weight is then $w=f / g$
f <- function (t) \{
ct <- (2+cos (t* (64/pi)))
$\exp \left(-t^{\wedge} 2\right) * c t / 3.544909$
\}
sim <- 1000000
$y<-$ rnorm(sim,sd=2)
w <- $f(y) / \operatorname{dnorm}(y, s d=2)$
$z<-(\operatorname{abs}(y)>1){ }^{*} w$
mean (z)/2
[1] 0.07368936

Importance and antithetic sampling - an example

```
z <- (abs (y)>1)*w
p <- mean(z)/2
p
[1] 0.07368936
```

-What is the uncertainty in this estimate?

- sd for the IS estimate of p : sdIS <- sqrt(var ($(\mathrm{y}>1) * \mathrm{w}) /$ sim) sdIS
[1] 0.000210754
- sd for the AS estimate of p :
rho <- $-\mathrm{p} /(1-\mathrm{p})$
sd <- sdIS*(1+rho)/2
sd
[1] 9.699411e-05
- 95\% CI for p : (0.07350, 0.07388)

Ex.: MC integration with importance sampling

- Going back to example with two significance tests
- We fix now $\mathrm{c}=2.21$
- We are interested to compute $\mathrm{P}\left(\mathrm{Z}_{1}>\mathrm{c}\right.$ or $\left.\mathrm{Z}_{2}>\mathrm{c}\right)$ with high precision using importance sampling
- Which importance functions g would be good?

Ex.: MC integration with importance sampling

- For illustration we use $N\left(\binom{\delta}{\delta},\left(\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right)\right)$ with $\delta=1$ for g (might be better choices, too)
- Draws in lower-left corner:
- less often sampled
- overweighted if sampled
- have lower precision (but $h=0$ there, so low precision is no problem)

Ex.: MC integration with importance sampling

- Standard deviation

n	1000	100000
$\hat{\mu}_{M C}$	0.0050	0.00049
$\hat{\mu}_{I S}^{*}$	0.0020	0.00020

- $\mathrm{n}=100000, \hat{\mu}_{I S}^{*}=0.02489$
- Draws with weights above 4, in $[1,4]$, in [0.25,1), and below 0.25 , respectively are in different colors in picture

Importance sampling with standardized weights

- Importance sampling estimator with unstandardized weights of $\int h(x) f(x) d x=\int h(x) \frac{f(x)}{g(x)} g(x) d x$ is
$\hat{\mu}_{I S}^{*}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right) w^{*}\left(X_{i}\right)$ with weights $w^{*}\left(X_{i}\right)=\frac{f\left(X_{i}\right)}{g\left(X_{i}\right)}$
- Importance sampling estimator with standardized weights is

$$
\hat{\mu}_{I S}=\sum_{i=1}^{n} h\left(X_{i}\right) w\left(X_{i}\right) \text { with } w^{*}\left(X_{i}\right)=\frac{f\left(X_{i}\right)}{g\left(X_{i}\right)}, w\left(X_{i}\right)=\frac{w^{*}\left(X_{i}\right)}{\sum_{j=1}^{n} w^{*}\left(X_{j}\right)}
$$

- $\hat{\mu}_{I S}$ can be used if f known up to proportionality constant
- $\hat{\mu}_{I S}$ has a slight bias and variance more complicated

Importance sampling with standardized weights

- Importance sampling estimator with standardized weights is

$$
\hat{\mu}_{I S}=\sum_{i=1}^{n} h\left(X_{i}\right) w\left(X_{i}\right) \text { with } w^{*}\left(X_{i}\right)=\frac{f\left(X_{i}\right)}{g\left(X_{i}\right)}, w\left(X_{i}\right)=\frac{w^{*}\left(X_{i}\right)}{\sum_{j=1}^{n} w^{*}\left(X_{j}\right)}
$$

- $\hat{\mu}_{I S}$ has a slight bias,

$$
\mathrm{E}\left(\hat{\mu}_{I S}-\mu\right)=\frac{1}{n}\left[\mu \operatorname{Var}\left(w^{*}(X)\right)-\operatorname{Cov}\left(t(X), w^{*}(X)\right)\right]+O\left(\frac{1}{n^{2}}\right)
$$

- Its variance is

$$
\operatorname{Var}\left(\hat{\mu}_{I S}\right)=\frac{1}{n}\left[\operatorname{Var}(t(X))+\mu^{2} \operatorname{Var}\left(w^{*}(X)\right)-2 \mu \operatorname{Cov}\left(t(X), w^{*}(X)\right)\right]+O\left(1 / n^{2}\right)
$$

- To estimate these quantities, one can use the sample statistics for $w^{*}(X)$ and $t(X)=h(X) w^{*}(X)$ and replace μ by its estimate

