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Analytical one-dimensional optimisation

If we want to maximise a one-dimensional function, for example g(z) = 4 + = — 22, we use the
first and second derivative. We set the first derivative to 0 and solve the equation. Solutions
are then investigated with the second derivative: if it is negative, we have found a maximum; if
it is positive, we have found a minimum; if it is 0, we cannot be sure what it is and have to do

further investigations.

Example for analytical two-dimensional optimisation

Suppose we want to determine the values x and y such that the following function becomes
maximal:
g(z,y) = —32% — 4y® + x>

In this case, it is possible to calculate these values analytically. In the left figure, you can see a
3d-plot of this function (where z = g(x,y)). In the right figure, you can see a contour plot of it
with z and y at the two axis and the function value shown in terms of contours.
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Here, we have a two-dimensional case, but we can generalise the computation from the one-
dimensional case. Corresponding to the first derivative is the gradient, corresponding to the
second derivative is the Hessian matrix. We compute them now for this example.



Gradient

The gradient is a vector; each component is the derivative with respect to one variable. The
derivative with respect to = is —6x + y> and with respect to y it is —8y + 3xy2. The gradient is

therefore:
g(( Y >) o ( —8y + 3zy? ) )

The gradient at a point (xg,%0) " can be interpreted as the direction of steepest increase of g in

this point.
Hessian

The Hessian matrix is the collection of second order derivatives. Here, we have the second
derivative with respect to = (—6), the second derivative with respect to y (3y?), and the derivative
with respect to x and then to y (—8 + 6xy). The Hessian matrix is then

n | x —6 32
g (<y >):<3y2 —8563@)’

The Hessian matrix at a point (z9,y)' gives information about the local curvature of g in this
point.

Set gradient to 0

We get two equations, —6x + y3 = 0 and —8y + 3zy? = 0. The first gives © = y3/6 which we
plug in into the second: 8y = 3°/2. So y = 0 or 16 = y*. This gives three possibilities for y:
y = —2,0,2. Using z = y3/6, we identify the following three points where the gradient is the

0-vector:
—4/3 0 4/3
()0)(7)

Investigate the Hessian matrix

We compute the Hessian matrix for the second and the third point (the first point is similar to

the third):
(5)-( )

One can check that the condition for negative definitness is fulfilled for this matrix and conse-
quently, we have shown that we have a local maximum at (0,0)".

o 4/3 —6 12
()-8 )

The eigenvalues of this matrix are —12.89,14.89 (they can be computed analytically as solutions
for A in Ax = Ax and one obtains then 1 &4 \/@; you can check the result with the R-function
eigen). Since one eigenvalue is negative, the other positive, the Hessian matrix is indefinite,
and the point (4/3,2)" is a saddle point of g.

The results found here analytically can be confirmed in the figure above.



The eigenvectors

Each eigenvalue has an eigenvector associated. We get even more insight about a saddle point (or
maximum, minimum) if we consider eigenvectors. If one moves in the direction of the eigenvector
through a point x¢ where the gradient of g is 0, the eigenvalue can be interpreted as second
derivative in that direction.

In our example, we consider the saddle point xg = (4/3, 2)T. The eigenvectors are

—0.867 0.498
0.498 )’ 0.867 )’

for the eigenvalues —12.89,14.89, respectively (in red and blue, respectively, in the figure; xg =
(4/3,2)7 is where the two lines cross). Therefore, going through xg into the direction of the
first eigenvector (red) means that xg is a local maximum in this direction; whereas it is a local
minimum in the direction of the second eigenvector (blue).

A

Definitions and results about definite symmetric matrices

Let A be a symmetric n x n-matrix (AT = A). Then:

e A is called positive definite if x' Ax > 0 for all n-dimensional vectors x # 0. This is
fulfilled if and only if all n eigenvalues are positive.

A is called negative definite if x" Ax < 0 for all n-dimensional vectors x # 0. This is
fulfilled if and only if all n eigenvalues are negative.

A is called positive semi-definite if x" Ax > 0 for all n-dimensional vectors x. This is
fulfilled if and only if all n eigenvalues are > 0.

A is called negative semi-definite if x" Ax < 0 for all n-dimensional vectors x. This is
fulfilled if and only if all n eigenvalues are < 0.

A is called indefinite if x] Ax; > 0 and x5 Axy < 0 for two n-dimensional vectors x;
and x5. This is fulfilled if and only if at least one eigenvalue is positive and at least one
eigenvalue is negative.



Results on conditions for maximum, minimum, and saddle point

Let g : IR™ — IR be an at least two times continuously differentiable function. Let x¢ be a
vector where the gradient of g is 0. Then:

e xg is a local maximum if the Hessian matrix at xq is negative definite.
e Xq is a local minimum if the Hessian matrix at xg is positive definite.

e X is a saddle point if the Hessian matrix at xq is indefinite.

Notation

Instead of writing ¢’(x) for the gradient and ¢”(x) for the Hessian, the notation Vg(x) and H(x)
is often used in literature.



