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Analytical one-dimensional optimisation

If we want to maximise a one-dimensional function, for example g(x) = 4 + x− x2, we use the
first and second derivative. We set the first derivative to 0 and solve the equation. Solutions
are then investigated with the second derivative: if it is negative, we have found a maximum; if
it is positive, we have found a minimum; if it is 0, we cannot be sure what it is and have to do
further investigations.

Example for analytical two-dimensional optimisation

Suppose we want to determine the values x and y such that the following function becomes
maximal:

g(x, y) = −3x2 − 4y2 + xy3.

In this case, it is possible to calculate these values analytically. In the left figure, you can see a
3d-plot of this function (where z = g(x, y)). In the right figure, you can see a contour plot of it
with x and y at the two axis and the function value shown in terms of contours.

Here, we have a two-dimensional case, but we can generalise the computation from the one-
dimensional case. Corresponding to the first derivative is the gradient, corresponding to the
second derivative is the Hessian matrix. We compute them now for this example.
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Gradient

The gradient is a vector; each component is the derivative with respect to one variable. The
derivative with respect to x is −6x+ y3 and with respect to y it is −8y+ 3xy2. The gradient is
therefore:

g′(

(
x
y

)
) =

(
−6x+ y3

−8y + 3xy2

)
.

The gradient at a point (x0, y0)
⊤ can be interpreted as the direction of steepest increase of g in

this point.

Hessian

The Hessian matrix is the collection of second order derivatives. Here, we have the second
derivative with respect to x (−6), the second derivative with respect to y (3y2), and the derivative
with respect to x and then to y (−8 + 6xy). The Hessian matrix is then

g′′(

(
x
y

)
) =

(
−6 3y2

3y2 −8 + 6xy

)
.

The Hessian matrix at a point (x0, y0)
⊤ gives information about the local curvature of g in this

point.

Set gradient to 0

We get two equations, −6x + y3 = 0 and −8y + 3xy2 = 0. The first gives x = y3/6 which we
plug in into the second: 8y = y5/2. So y = 0 or 16 = y4. This gives three possibilities for y:
y = −2, 0, 2. Using x = y3/6, we identify the following three points where the gradient is the
0-vector: (

−4/3
−2

)
,

(
0
0

)
,

(
4/3
2

)
.

Investigate the Hessian matrix

We compute the Hessian matrix for the second and the third point (the first point is similar to
the third):

g′′(

(
0
0

)
) =

(
−6 0
0 −8

)
.

One can check that the condition for negative definitness is fulfilled for this matrix and conse-
quently, we have shown that we have a local maximum at (0, 0)⊤.

g′′(

(
4/3
2

)
) =

(
−6 12
12 8

)
.

The eigenvalues of this matrix are −12.89, 14.89 (they can be computed analytically as solutions
for λ in Ax = λx and one obtains then 1±

√
193; you can check the result with the R-function

eigen). Since one eigenvalue is negative, the other positive, the Hessian matrix is indefinite,
and the point (4/3, 2)⊤ is a saddle point of g.

The results found here analytically can be confirmed in the figure above.
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The eigenvectors

Each eigenvalue has an eigenvector associated. We get even more insight about a saddle point (or
maximum, minimum) if we consider eigenvectors. If one moves in the direction of the eigenvector
through a point x0 where the gradient of g is 0, the eigenvalue can be interpreted as second
derivative in that direction.

In our example, we consider the saddle point x0 = (4/3, 2)⊤. The eigenvectors are(
−0.867
0.498

)
,

(
0.498
0.867

)
,

for the eigenvalues −12.89, 14.89, respectively (in red and blue, respectively, in the figure; x0 =
(4/3, 2)⊤ is where the two lines cross). Therefore, going through x0 into the direction of the
first eigenvector (red) means that x0 is a local maximum in this direction; whereas it is a local
minimum in the direction of the second eigenvector (blue).

Definitions and results about definite symmetric matrices

Let A be a symmetric n× n-matrix (A⊤ = A). Then:

• A is called positive definite if x⊤Ax > 0 for all n-dimensional vectors x ̸= 0. This is
fulfilled if and only if all n eigenvalues are positive.

• A is called negative definite if x⊤Ax < 0 for all n-dimensional vectors x ̸= 0. This is
fulfilled if and only if all n eigenvalues are negative.

• A is called positive semi-definite if x⊤Ax ≥ 0 for all n-dimensional vectors x. This is
fulfilled if and only if all n eigenvalues are ≥ 0.

• A is called negative semi-definite if x⊤Ax ≤ 0 for all n-dimensional vectors x. This is
fulfilled if and only if all n eigenvalues are ≤ 0.

• A is called indefinite if x⊤
1 Ax1 > 0 and x⊤

2 Ax2 < 0 for two n-dimensional vectors x1

and x2. This is fulfilled if and only if at least one eigenvalue is positive and at least one
eigenvalue is negative.
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Results on conditions for maximum, minimum, and saddle point

Let g : IRn → IR be an at least two times continuously differentiable function. Let x0 be a
vector where the gradient of g is 0. Then:

• x0 is a local maximum if the Hessian matrix at x0 is negative definite.

• x0 is a local minimum if the Hessian matrix at x0 is positive definite.

• x0 is a saddle point if the Hessian matrix at x0 is indefinite.

Notation

Instead of writing g′(x) for the gradient and g′′(x) for the Hessian, the notation ∇g(x) and H(x)
is often used in literature.
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