
Advanced Computational Statistics – Spring 2023

Assignment for Lecture 1 and 2

Frank Miller, frank.miller@liu.se,
Department of Computer and Information Science, Linköpings University
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Perform the solutions individually and send your report until April 3 by email to me. Try to keep this
deadline. However, if you have problems with it, there will be a final deadline on September 30 for all
assignments. From the following six problems, you can choose five. It is optional, if you want to do the
sixth as well.

Problem 1.1

We have independent data x1, . . . , xn from a Cauchy-distribution with unknown location parameter θ
and known scale parameter 1. The log likelihood function is

−n log(π)−
n∑

i=1

log(1 + (xi − θ)2),

and it’s derivative with respect to θ is
n∑

i=1

2(xi − θ)

1 + (xi − θ)2
.

Data of size n = 12 is given:
x = (0.72, 5.50,−2.21,−0.35,−0.67, 0.16, 23.64, 1.00, 1.06,−495.81,−1.98, 37.72).

a. Plot the log likelihood function for the given data within an appropriate range; try to cover all local
maxima of this function. Plot the derivative in the same range and check visually how often the
derivative is equal to 0.

b. Program the Newton-Raphson method. You need the second derivative and you might use the
R-function D to help. Choose suitable starting values (based on your plots) to identify all local
maxima of the likelihood function.

c. How would you use your Newton-Raphson function if you want to determine the global maximum
and if you do not want to choose the starting value based on a plot (i.e. the algorithm should run
automatised)?

Problem 1.2

Let

g(x, y) = −x2 + 10y − 2y3 +
1

2
x2y.

a. Plot the function with a contour plot or a 3-dimensional plot to visualise the function.

b. Compute the gradient analytically. Set the gradient to 0 and solve the equations analytically to
identify candidates for maxima, minima, and saddle points.

c. Compute the Hessian matrix analytically. Determine if it is positive, negative, or indefinite in the
candidate points (if you want to calculate eigenvalues, you can use software for it). What does this
mean for your candidate points identified in b.?
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Problem 1.3

Three doses (0.1, 0.3, and 0.9 g) of a drug and placebo (0 g) are tested in a study. A dose-dependent
event is recorded afterwards. The data of n = 10 subjects is shown in Table 1; xi is the dose in gram; x̃i

is the dose with unit changed to milligram; yi = 1 if the event occurred, yi = 0 otherwise.

xi in g 0 0 0 0.1 0.1 0.3 0.3 0.9 0.9 0.9
x̃i in mg 0 0 0 100 100 300 300 900 900 900
yi 0 0 1 0 1 1 1 0 1 1

Table 1: Data for Problem 1.3

You should fit a simple logistic regression

p(x) = P (Y = 1|x) = 1

1 + exp(−β0 − β1x)
.

to the data, i.e. estimate β0 and β1. One can show that the log likelihood is

g((β0, β1)) =

n∑
i=1

[
yi log{(1 + exp(−β0 − β1xi))

−1}+ (1− yi) log{1− (1 + exp(−β0 − β1xi))
−1}

]
and the gradient is

g′(b) =

n∑
i=1

{
yi −

1

1 + exp(−β0 − β1xi)

}(
1
xi

)
.

a. Write a program for an ML-estimator for (β0, β1) using the steepest ascent method with a step-size
halving line search (back-tracking). Problems could turn up later, e.g. when the log is taken from
a value close to 0. If this becomes a problem, try to handle this issue.

b. Plot the log-likelihood function (contour plot) for the observations in Table 1. Compute the ML-
estimator with your function both using gram data (xi, yi) and using milligram data (x̃i, yi). How
many iterations were used in each case? Discuss reasons for that result. Note: to check your
ML-solution, you might use the function glm in R.

c. Choose the quasi-Newton with BFGS or the Newton algorithm. Write your own optimisation
program with the chosen algorithm. Run your program for the dataset in Table 1, both using
g-data and mg-data. Report the number of iterations used and compare with the results from b..
If you have chosen the Newton algorithm, you need the Hessian matrix; write how you obtained it
or if you used sources for it, please cite appropriately.

Problem 1.4

We consider the quadratic two-dimensional function

g(x) = −1

2
x⊤Ax, x ∈ IR2.

with a symmetric and positive definite 2 × 2-matrix A. The function g has a maximum at (0, 0)⊤ and
the gradient is g′(x) = −Ax. For A, we consider two different matrices with

A1 =

(
8 1
1 8

)
, A2 =

(
1 0
0 100

)
.

a. Program your own function for accelerated steepest ascent with Polyak’s momentum with fixed step
size α (without backtracking) and fixed momentum parameter β. These two parameters should be
options in your function such that you can test different options. Choose a stopping criterion such
that you have correct results up to around 6 digits. Your function should report the number of
iterations used.
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b. Plot a contour plot for the two cases and compute with R the eigenvalues of the matrices Ai and
the condition number κ. For both the steepest ascent and the accelerated steepest ascent, compute
the optimal parameters and the best convergence rate ρ in the two cases.

c. Run the steepest ascent method (i.e. use β = 0 in your function) using a starting value x(0) =
(−4,−2)⊤. Use the optimal value and several other α-values in a grid of 0.01 or 0.02 around the
optimal value. Report if the algorithm successfully found the maximum and how many iterations
were needed for each parameter value. Is the performance best for the theoretically best α-value?

d. Run the accelerated steepest ascent method with Polyak’s momentum. Use the optimal α, β and
some values around them and report convergence and number of iterations. How much does the
acceleration improve performance.

Problem 2.1

As in Problem 1.3, we consider ML estimation for simple logistic regression

p(x) = P (Y = 1|x) = 1

1 + exp(−β0 − β1x)
.

a. Program a stochastic gradient ascent algorithm with a fixed step size α and a predefined total
number of iterations T for simple logistic regression. Your program should also plot the computed

(β
(t)
0 , β

(t)
1 ) in each iteration t (t = 0, 1, . . . , T ) such that you can monitor the search path.

b. Analyze the dataset logist.txt (homepage; first column is x, second column y) with your algorithm

using the starting value (β
(0)
0 , β

(0)
1 ) = (0.2, 0.5). Choose the total number of iterations T and the

step size α. You might need to test different options first to come to a good choice. Explain why
you have chosen these values T and α.

Problem 2.2

Consider a linear regression model
y = Xβ + ϵ

for a design matrix X ∈ IRn×p of full rank p with n > p. The interest is in the least squares solution, i.e.
the function

g(b) =
1

n
∥Xb− y∥22

should be minimised. Show that g is L-smooth and m-strongly convex. Present expressions for L and m.
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