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Perform the solutions individually and send your report until April 17 by email to me. Try
to keep this deadline. However, if you have problems with it, there will be a final deadline on
September 30 for all assignments. Please include your name in the filename(s) of your solution
file(s). Please send me one pdf-file with your report (alternatively, Word is ok, too), and
additionally, please send me your code in one separate plain-text file (an R-markdown, .rmd,
is possible but not required).

From the following four problems, you can choose three. It is optional, if you want
to do the fourth as well.

Problem 3.1

Let g(x),x ∈ IR3 the multivariate normal mixture with

g(x) =
4∑

i=1

wifi(x;µi,Σi),

where fi(·;µi,Σi) is the density of the multivariate normal distribution with mean vector µi

and covariance matrix Σi. We use here mixing weights wi = 1/4, i = 1, . . . , 4, mean vectors

µ1 = (0, 0, 0)⊤, µ2 = (2, 2, 0)⊤, µ3 = (2, 0, 2)⊤, µ4 = (0, 2, 2)⊤,

and the covariance matrices Σ1 = Σ2 = Σ3 = I are the identity matrix and Σ4 = 0.98 · I (it is
not difficult to program the density of the multivariate normal, especially here when covariance
matrices are simple; alternatively a package like mvtnorm can be used).

a. Identify first the four local maxima by using different starting values for an algorithm of
your choice. Which of the local maxima is the global maximum?

b. Use now the Particle Swarm Optimization in the R-function psoptim in package pso with
the aim to identify the global maximum. Choose different values for the swarm size and
for the average percentage of informants for each particle. (If you like, you can also
investigate other parameters in the same way; but this is optional). You might consider
another maximum number of iterations to keep the running times reasonable. Do not
forget to define an appropriate search space.

Run the PSO repeatedly (e.g. 100 times) for each chosen configuration of swarm size and
average percentage of informants. Check if the result was close to the true global maximum.
Based on this, identify values for these parameters which work well for maximisation of
this function g.
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Problem 3.2

An experiment was conducted investigating how the growth of garden cress depends on a (poten-
tially) toxic fertilizer. The investigated range of fertilizer was between 0 and 1.2% concentration
in the water. Growth of garden cress was measured in yield in mg after 5.5 days of growth.
n = 81 experiments were conducted and the data is on the homepage in the file cressdata.txt
(columns: observation number, fertilizer concentration, yield).

A fifth-degree polynomial is supposed to be fit to the data using least squares with L1

regularisation (Lasso). The objective function to be minimised is

g(β) = ∥Xβ − y∥22 + λ∥β̃∥1, (1)

where X is the design matrix with columns 1, fertilizer, ..., fertilizer5, β̃ = (β1, . . . , β5)
⊤ is the

parameter vector without intercept, β = (β0, β1, . . . , β5)
⊤ is the complete parameter vector and

y is the yield-data. (We do not regularise the intercept, see e.g. Lange (2010), page 310.) λ ≥ 0
is a fixed regularisation constant (we do not determine it data-dependently here).

Note that regularisation in the situation of high degree polynomial models is illustrated
in Chapter 5.2 of Goodfellow, Bengio and Courville (2016). Note further that λ = 0 cor-
responds to the least squares estimation, where the solution of the optimisation problem is
β̂ = (X⊤X)−1X⊤y.

a. Program yourself the Lasso objective function (1). Choose several algorithms to solve the
optimisation problem; you can use e.g. some methods in optim or psoptim. Motivate
choice of parameters and starting values used in these algorithms. Determine the Lasso
estimator for λ = 0, 10 and two or three other λ-values with the chosen algorithms. Report
also the objective value g(β̂) in order to compare the algorithms. Which algorithm is best,
which are good?

b. Choose the estimated β of a good algorithm and plot the predicted regression functions
for the chosen λ-values together with the data. Comment on the shape of the regression
functions having the illustration in Chapter 5.2 in Goodfellow et al. (2016) in mind.

Problem 3.3

Consider a unidimensional minimisation problem where the minimum is attained at 0. Consider
further a particle in the PSO algorithm with x(1) = 0 and x(2) = −2 (v(2) = −2). For this

particle, we have p
(t)
best = g

(t)
best = 0 for all t (the starting value happened to identify already

the minimum; the stagnation assumption is fulfilled here). We consider a standard PSO with
parameters w, c1 = c2 =: c which generates the sequence x(t), t = 1, 2, . . . for this particle.

a. Compute the sequence E[x(t)] for iteration number t = 1, 2, . . . , 40 and plot E[x(t)] versus
t for different combinations of w and c. Use the pairs (0.721, 1.193) (default in R-package
pso), (0.9, 1.193), (0.721, 2.2), (0.2, 3) for (w, c) and at least one further pair of your choice.

b. Simulate the sequence x(t), t = 1, 2, . . . , 40, around 1000 times. Compute the Monte Carlo
estimate for Var(x(t)) for each t = 3, . . . , 40 (which is simply the variance of the say 1000
simulated values for x(t)). Plot the estimated variance versus iteration number. Do this
for the (w, c)-pairs which you have used in a.

c. Based on your results from a. and the empirical results from b.: Can you confirm the
theoretical results about order-1 and order-2 stability?
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Problem 3.4

Consider planning of an experiment when a cubic regression model

yi = β0 + β1wi + β2w
2
i + β3w

3
i + εi, i = 1, . . . , n,

is assumed. The predictor variable wi might be chosen in the interval [−1, 1]. However, due to
practical circumstances, a distance of 0.05 between design points is required and at most one
observation can be made at each point. Therefore, we require that observations can only be
made using w ∈ {−1,−0.95,−0.9, . . . , 1}. Further, the sample size n might be chosen by the
experimenter, but each observation has a cost. To balance between the higher information from
more observations and their higher cost, a penalized D-optimality criterion should be optimised
here:

Minimise n/5− log{det(XTX)}

where X is the design matrix having rows (1, wi, w
2
i , w

3
i ) and log is the natural logarithm. An

example function is provided in the file crit HA3.r on the course homepage which computes
this criterion.

a. Write your own simulated annealing algorithm for the problem described here. You need
to choose a reasonable proposal distribution (possibly on some neighbourhood of a design)
and a cooling schedule; you might need to test different options.

b. What is the optimal design in this case based on your optimisation?
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