Advanced Computational Statistics - Spring 2023
 Assignment for Lecture 4

Frank Miller, frank.miller@liu.se, Department of Computer and Information Science, Linköpings University

April 18, 2023

Perform the solutions individually and send your report until May $\mathbf{1}$ by email to me. Try to keep this deadline. However, if you have problems with it, there will be a final deadline on September 30 for all assignments. Please include your name in the filename(s) of your solution file(s). Please send me one pdf-file with your report (alternatively, Word is ok, too), and additionally, please send me your code in one separate plain-text file (an R-markdown, .rmd, is possible but not required).

The following Problems 4.1 and 4.2 are mandatory; Problem 4.3 is optional.

Problem 4.1

We want to determine the D-optimal design for cubic regression where the independent variable x is allowed to have values between 0 and 10 . Four different $x_{i} \in[0,10], i=1,2,3,4$, can be chosen by the experimenter and the proportion of observations done at each x_{i} is $w_{i} \geq 0$ with $\sum_{i=1}^{4} w_{i}=1$. The D-optimal design maximises

$$
\operatorname{det}\left(\sum_{i=1}^{4} w_{i} \mathbf{f}\left(x_{i}\right) \mathbf{f}\left(x_{i}\right)^{\top}\right), \text { with } \mathbf{f}(x)=\left(1, x, x^{2}, x^{3}\right)^{\top}
$$

under the restrictions mentioned above.
a. Determine a matrix \mathbf{U} and a vector \mathbf{c} such that the constraints can be written in the form $\mathbf{U y}-\mathbf{c} \geq 0$, where \mathbf{y} is the vector of parameters to be optimised over.
b. Determine the D-optimal design using constrOptim. Does the result make sense?
c. Write an R-function for a function \tilde{g} where \log barriers $\mu \cdot b(\mathbf{y})$ at all constraints are added to the function g (which is to be maximised). The value μ could be a parameter in the function such that you easily can modify it.
d. Choose some reasonable values for μ and compute the optimal value of g using unconstrained optimisation, e.g with optim. Report results for a sequence of decreasing μ. Do you obtain similar results as in b. when using small μ ?

Problem 4.2

We consider again as in Problem 3.2 the experiment investigating how the growth of garden cress depends on a (potentially) toxic fertilizer. The data is on the homepage in the file cressdata.txt (columns: observation number, fertilizer concentration, yield).

We want to estimate now a third-degree polynomial (cubic), again using least squares with L^{1}-regularisation. In contrast to the penalized objective function in Problem 3.2, we use now the constrained objective function

$$
\begin{equation*}
\text { Minimise } g(\boldsymbol{\beta})=\|\mathbf{X} \boldsymbol{\beta}-\mathbf{y}\|_{2}^{2} \text { subject to }\|\tilde{\boldsymbol{\beta}}\|_{1} \leq t \tag{1}
\end{equation*}
$$

where \mathbf{X} is the design matrix with columns 1 , fertilizer, fertilizer ${ }^{2}$, fertilizer ${ }^{3}$, $\tilde{\boldsymbol{\beta}}=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)^{\top}$ is the parameter vector without intercept, $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)^{\top}$ is the complete parameter vector and \mathbf{y} is the yield-data. The constant $t \geq 0$ is now the regularisation constant. t and λ (in Problem 3.2) are related such that a t in the constrained problem corresponds to an λ in the penalised problem which gives the same solution.

Note that now, $t=\infty$ corresponds to the least squares estimation, where the solution for $\boldsymbol{\beta}$ of the optimisation problem is $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$.
a. Write the constraint $\|\tilde{\boldsymbol{\beta}}\|_{1} \leq t$ in terms of eight linear constraints $\mathbf{u}_{i}^{\top} \boldsymbol{\beta}+c_{i} \geq 0$ (or as $\mathbf{U} \boldsymbol{\beta}-\mathbf{c} \geq \mathbf{0}$ with a matrix \mathbf{U} with 8 rows).
b. Write an expression for the objective function minus log barriers, $\tilde{g}(\boldsymbol{\beta})=g(\boldsymbol{\beta})-\mu \cdot b(\boldsymbol{\beta})$. Determine the gradient of g and of \tilde{g}. (Note: You do not have to implement the gradient of \tilde{g}.)
c. Compute the Lasso-estimate using constrOptim for $t=1000,100$ and two other t 's. Test two different methods for the inner iteration in optim, e.g. Nelder-Mead and BFGS. For the non-Nelder-Mead-method, specify explicitly the gradient when calling constrOptim. (Note: here you need the gradient of g, not of \tilde{g}.) Check $\|\tilde{\boldsymbol{\beta}}\|_{1}$ for the solutions: Is the inequality constraint active or not?

Problem 4.3 (optional)

As in Problem 3.4, consider a cubic regression function on $[-1,1]$. We require again that observations can only be made using $w \in\{-1,-0.95,-0.9, \ldots, 1\}$, but now several observations can be made at each of these w. The sample size is this time required to be $n=100$. We want to determine the D-optimal design, i.e. the following criterion should be optimised here, while adhering to the constraint $n=100$:

$$
\text { Minimise }-\log \left\{\operatorname{det}\left(X^{T} X\right)\right\} .
$$

Again, X is the design matrix having rows $\left(1, w_{i}, w_{i}^{2}, w_{i}^{3}\right)$ and \log is the natural logarithm. The example function from Lecture 3, crit_HA3.r on the course homepage, might be modified for this criterion.
a. Write an simulated annealing algorithm (or modify the one from Problem 3.4) to determine an D-optimal design. Report the result from the optimisation.
b. Add an additional constraint that no more than 6 observations are allowed in each design point w_{i} to your program, run it, and compare the result with the result from a.

