

Optimal pretesting of questions for Swedish national tests in school

Frank Miller, Stockholm and Linköping University

Joint work with Ellinor Fackle-Fornius

COMPSTAT, Bologna, 2022

National tests in Swedish schools

- National tests are conducted in Grade 3, 6, 9, and ~12
- Here: Mathematics test in Grade 6

Voluntary pupils pretest question ("items") before use

pretesting

Pretesting of items

- One important reason to pretest is to estimate item characteristics like difficulty
- Usually, new items are randomly allocated to pupils for pretesting
- Can we improve precision of estimates when we allocate based on the ability of pupils?

• Probability to answer item *i* correctly (*i*=1,...,*n*):

$$p_i(\theta) = P(Y = 1 | \theta, b_i) = \frac{1}{1 + \exp\{-(\theta - b_i)\}}$$

- $\theta \in \mathbb{R}$ pupil's ability • b_i item difficulty $p_i(\theta)$
- 2PL model: *a_i* item discrimination (slope)
- 3PL model: *c_i* guessing parameter (lower asymptote)

θ

 b_i

Pupils' results in national test and versions

V1

20

V20

100

Based on their results in national test, ~1600 participating pupils were allocated to 20

- 5% pupils with lowest result to V1,
- next 5% to V2,
- and so on,
- 5% with highest results to V20

total score

60

80

National test 2022, Grade 6, in Mathematics

40

What is a design here?

2

0

V 1

0

I 60

V 20

0

Version

I 59	0	0	0		0
I 58	0	0	0		0
I 57	1	0	0		0
•••					
16	0	0	1		0
15	0	0	0		0
14	0	0	0		1
13	0	0	0		0
12	0	0	0		0
1	0	1	0		0

V3

0

Uncertainty of estimates (example: 1PL model)

• Variance of the estimate for item difficulty b_i is in the 1PL model inversely proportional to information:

$$M_i = \int p_i(\theta) (1 - p_i(\theta)) h_i(\theta) d\theta$$

where $h_i(\theta)$ is sub-population allocated to item *i*

g=population of pupils

 Approach described by Ul Hassan and Miller (2019); based on finite population sampling (Wynn, 1982)

Uncertainty of estimates (example: 1PL model)

$$M_i = \int p_i(\theta) (1 - p_i(\theta)) h_i(\theta) d\theta$$

- M_i depends on difficulty b_i
- Need some guess for b_i which we get from pretesting done in Spring 2021
- We have many items to be pretested
- D-optimal design: maximize $\prod M_i$
- For other models (2PL, 3PL, ...), variance of parameter estimates is characterized by a matrix M_i;
 D-optimal design: maximize ∏det(M_i)

Optimal design for illustrating 1PL example

- 1PL model for all 60 items; difficulty b_i equidistant between -2 and 2
- D-optimal design:
 - Version 1/2: Item 1-9
 - Version 3: Item 1-6, 10-12
 - Version 4: Item 7-15
 - Version 19/20: Item 52-60

Run of the optimisation algorithm

Design after 2e+06 iterations

- Simulated annealing algorithm used
- Random design-changes done in each of millions iterations
 Starting design
 Design after 1e+06 iterations
- A design change is accepted if it improves variance or – in early iterations with some probability – worsens variance a little

• 1PL: D-optimal to observe pupils with $\theta = b_i$

• 2PL: D-optimal to observe pupils with $\theta = b_i \pm const/a_i$ (1/2 in each design point)

(see Abdelbasit and Plackett, 1983)

• 3PL: D-optimal to observe pupils with $\theta = -\infty$, $\theta = b_i \pm const/a_i$ (1/3 in each design point)

Optimal design for illustrating 2PL example

 Precision of each item after random design (red) and after D-optimal design (black)

Final pretesting in May/June 2022

- Examples before were for illustration
- Reality is more complicated:
 - Pretesting items are of **mixed format**; several models are used (2PL, 3PL, Generalized Partial Credit Model GPCM)
 - Some items belong together (e.g. Problem 7a, 7b, 7c; called here "item groups")
 - **Time needed** is different for items; time for each item was pre-estimated by experts; target time of 40 minutes for the test

(red=2PL, green=3PL, blue=GPCM item)

• Relative efficiency optimal vs. random design: 1.44

Joint work

Ellinor Fackle-Fornius (Design elaboration),

Maria Nordlund, Anette Nydahl, Samuel Sollerman (Planning for implementation and conduct of the test)

Support

This work is supported by the Swedish Research Council

References

- Abdelbasit KM, Plackett RL (1983). Experimental design for binary data. *Journal of the American Statistical Association*, **78**, 90-98.
- Ul Hassan M, Miller F (2019). Optimal item calibration for computerized achievement tests. *Psychometrika*, **84**, 1101-1128.
- Wynn H (1982). Optimum submeasures with applications in finite population sampling. In *Statistical decision theory and related topics III*, pages 485-495. Academic Press, New York.