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National tests in Swedish 
schools

● National tests are conducted in Grade 3, 6, 9, and ~12

● Here: Mathematics test in Grade 6

● Voluntary pupils pretest question (“items”) before use
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Tests

Now: Optimize 

design for this 

pretesting
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Pretesting of many 
new items in 
Spring 2021

National tests 
Spring 2022

Final pretesting
May/June 2022

Selection 

of 85 items

Pupils



Pretesting of items

● One important reason to pretest is to estimate item 

characteristics like difficulty

● Usually, new items are randomly allocated to pupils 

for pretesting

● Can we improve precision of estimates when we 

allocate based on the ability of pupils?
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Model: 1-parameter 
logistic (1PL, Rasch model)

● Probability to answer item i correctly (i=1,…,n):

𝑝𝑖 𝜃 = 𝑃 𝑌 = 1 𝜃, 𝑏𝑖 =
1

1 + exp − 𝜃 − 𝑏𝑖

● 𝜃 ∈ ℝ pupil’s ability

● bi item difficulty

● 2PL model: ai item discrimination (slope)

● 3PL model: ci  guessing parameter (lower asymptote)
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bi

Slope = 1/4

θ

pi(θ)



Pupils’ results in national 
test and versions
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V1

V2
V20

Based on their results 

in national test, ~1600 

participating pupils 

were allocated to 20 

versions:

● 5% pupils with 

lowest result to V1,

● next 5% to V2,

● and so on,

● 5% with highest 

results to V20



What is a design here?
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V 1 V 2 V 3 … … V 20

I 60 0 0 0 0

I 59 0 0 0 0

I 58 0 0 0 0

I 57 1 0 0 0

… … … … …

I 6 0 0 1 0

I 5 0 0 0 0

I 4 0 0 0 1

I 3 0 0 0 0

I 2 0 0 0 0

I 1 0 1 0 0



Uncertainty of estimates 
(example: 1PL model)

● Variance of the estimate for item difficulty 𝑏𝑖 is in the 

1PL model inversely proportional to information:

𝑀𝑖 = න𝑝𝑖 𝜃 1 − 𝑝𝑖 𝜃 ℎ𝑖 𝜃 𝑑𝜃

where ℎ𝑖 𝜃 is sub-population allocated to item i

● Approach described by Ul Hassan and Miller (2019); 

based on finite population sampling (Wynn, 1982)
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g=population
of pupils



Uncertainty of estimates 
(example: 1PL model)

●
𝑀𝑖 = න𝑝𝑖 𝜃 1 − 𝑝𝑖 𝜃 ℎ𝑖 𝜃 𝑑𝜃

● 𝑀𝑖 depends on difficulty 𝑏𝑖

● Need some guess for 𝑏𝑖 which we get from pretesting 

done in Spring 2021

● We have many items to be pretested

● D-optimal design: maximize ς𝑀𝑖

● For other models (2PL, 3PL, ...), variance of 

parameter estimates is characterized by a matrix 𝑀𝑖; 

D-optimal design: maximize ςdet(𝑀𝑖)
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Optimal design for 
illustrating 1PL example
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● 60 items, 20 versions, 9 items per version

● 1PL model for all 60 items; difficulty bi

equidistant between -2 and 2

● D-optimal design:

● Version 1/2: Item 1-9 

● Version 3: Item 1-6, 10-12

● Version 4: Item 7-15

…

● Version 19/20: Item 52-60



Run of the optimisation
algorithm

● Simulated annealing algorithm used 

● Random design-changes done in each of millions 

iterations

● A design change is

accepted if it 

improves variance

or – in early 

iterations with 

some probability –

worsens variance 

a little
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Design-changes in one 
iteration

Random 

choice
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Random choice



Optimal design in 
examples for other models
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2PL model                3PL model



Theoretical optimal designs 
for 1PL, 2PL, 3PL model

● 1PL: D-optimal to observe pupils with 𝜃 = 𝑏𝑖

● 2PL: D-optimal to observe pupils with 𝜃 = 𝑏𝑖 ± 𝑐𝑜𝑛𝑠𝑡/𝑎𝑖
(1/2 in each design point)

(see Abdelbasit and Plackett, 1983)

● 3PL: D-optimal to observe pupils with 𝜃 = −∞,

𝜃 = 𝑏𝑖 ± 𝑐𝑜𝑛𝑠𝑡/𝑎𝑖 (1/3 in each design point)
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bi θ



Optimal design for 
illustrating 2PL example
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● Precision of each item after random design (red) and 

after D-optimal design (black)

Easiest item, b=-2 Most difficult item, b=2Middle difficulty



Final pretesting in 
May/June 2022

● Examples before were for illustration

● Reality is more complicated:

● Pretesting items are of mixed format; several 

models are used (2PL, 3PL, Generalized Partial 

Credit Model GPCM)

● Some items belong together (e.g. Problem 7a, 

7b, 7c; called here “item groups”)

● Time needed is different for items; time for 

each item was pre-estimated by experts; target 

time of 40 minutes for the test
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Optimal design for final 
pretesting May/June 2022

(red=2PL, green=3PL, blue=GPCM item)
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Precision of items after 
optimal vs. random design

● Relative efficiency optimal vs. random design: 1.44



Tests
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Pretesting of many 
new items in 
Spring 2021

National tests 
Spring 2022

Final pretesting 
May/June 2022

Selection of 

85 items and 

design choice

Pupils’ 

results Currently, 
analysis is 
ongoing



Thank you!
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