

Advanced computational statistics, lecture 2

Frank Miller, Department of Computer and Information Science, Linköping University

Department of Statistics; Stockholm University

March 17, 2023

Course schedule

- Topic 1: Gradient based optimisation
- Topic 2: Stochastic gradient based optimisation
- Topic 3: Gradient free optimisation
- Topic 4: Optimisation with constraints
- Topic 5: EM algorithm and bootstrap
- Topic 6: Simulation of random variables
- Topic 7: Importance sampling

Course homepage:

http://www.adoptdesign.de/frankmillereu/adcompstat2023.html

Includes schedule, reading material, lecture notes, assignments

Today's schedule

- Stochastic steepest descent (SSD; Stochastic gradient descent; SGD)
 - Idea and issues
 - Choice of step size
 - Mini-batches
 - Convergence analysis
- Exercise session

Note: Changed to descent and minimisation problem here to correspond to most literature, but this is no essential change.

Steepest descent

- Optimisation problem:
 - x p-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \min g(x)$
- Steepest descent:
 - Iteration: $x^{(t+1)} = x^{(t)} \alpha^{(t)} g'(x^{(t)})$

Steepest descent

• Iteration: $x^{(t+1)} = x^{(t)} - \alpha^{(t)} g'(x^{(t)})$

- Optimisation problem (finite sum case):
 - x p-dimensional vector, $g_i : \mathbb{R}^p \to \mathbb{R}$ functions
 - We search x^* with $g(x^*) = \min g(x)$ where $g = \sum_{i=1}^n g_i$
- If *n* large: Takes time to evaluate gradient $g' = \sum_{i=1}^{n} g'_{i}$

Stochastic steepest descent

- Iteration:
 - Choose $i \in \{1, ..., n\}$ randomly
 - $x^{(t+1)} = x^{(t)} \alpha^{(t)} g'_i(x^{(t)})$
- $\alpha^{(t)}$ is a predefined sequence, either
 - constant step size $\alpha^{(t)} = \alpha$ or
 - decreasing step size e.g. $\alpha^{(t)} = \alpha/t$
- Convergence (to a local minimum) can be shown if step size fullfills $\sum_{t=1}^{\infty} \alpha^{(t)} = \infty$ and $\sum_{t=1}^{\infty} (\alpha^{(t)})^2 < \infty$ (example: $\alpha^{(t)} = \alpha/t$)

Stochastic steepest descent

- Constant step size $\alpha^{(t)} = \alpha$ can still make sense if
 - Another algorithm is run afterwards, or
 - · If good but not necessarily best solution desired
- Choice of step size is critical
- Example: Two-parameter MLE computation (large n)
 Computation of MLE for a model with two parameters and n = 1 000 000.
 Starting value is not too good (has some distance to correct MLE). We monitor:
 - distance of current log likelihood to maximal log likelihood,
 - search path in 2d parameter space.

Stochastic steepest descent: choice of step size

- Example: Two-parameter MLE computation (large n)
- Constant step size $\alpha^{(t)} = \alpha$
- Choice of step size is critical
- Step size here:
 - $\alpha = 0.0006$ (black)
 - $\alpha = 0.002 \text{ (red)}$
 - $\alpha = 0.006$ (blue)

- If you have time for 5000 iterations: which step size is best?
- If you have only time for 500 iterations?
- If you have time for 50000 iterations?

Stochastic steepest descent: choice of step size

- Example: Two-parameter MLE computation (large n) Search path in the 2d parameter space
- 100 000 iterations,

$$\alpha = 0.0006$$

1 000 000 iterations,

$$\alpha = 0.0006$$

Starting value

Stochastic steepest descent

Influence of step size can be investigated at http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html (Fabia Pedregosa, Nov 2018)

Stochastic steepest descent: choice of step size

- Goodfellow et al., 2016, Chapter 8.3.1 (notation adjusted):
- "In practice, it is common to decay the learning rate [=step size $\alpha^{(t)}$] linearly until iteration τ : $\alpha^{(t)} = (1 \gamma)\alpha_0 + \gamma\alpha_\tau$ with $\gamma = \frac{t}{\tau}$. After iteration τ , it is common to leave α constant."
- Choice of step size "is more of an art than a science, and most guidance on this subject should be regarded with some skepticism."
- Choose τ "to make a few hundred passes through the training set."
- $\alpha_{\tau} \approx \alpha_0/100$
- Choose α_0 avoiding violent oscillations and too low learning rate

(Stochastic) steepest descent: running time

- Example: Two-parameter MLE computation (large n)
- Stochastic steepest ascent: 50000 iterations took 7 s
- Steepest ascent with alpha-halving: 112 iterations took 52 s
- Stochastic steepest ascent could run 3320 iterations when steepest ascent could run 1 iteration

Stochastic steepest descent: mini-batches

- Instead of sampling a single *i*, a batch of size *m* can be sampled in each iteration
- Iteration:
 - Choose $\{i_1, \dots, i_m\} \subseteq \{1, \dots, n\}$ randomly
 - $x^{(t+1)} = x^{(t)} \alpha^{(t)} \sum_{j=1}^{m} g'_{i_j}(x^{(t)})$
- Decreases risk of large random oscillations
- Especially interesting when algorithm performed on a parallel computer

Accelerated stochastic steepest descent (adding momentum)

- Stochastic steepest descent $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} \alpha \mathbf{g'}_i(\mathbf{x}^{(t)})$ can be combined with momentum method (see <u>Goodfellow, Bengio, Courville, 2016</u>, Chapter 8.3.2)
- Iteration:
 - Choose $i \in \{1, ..., n\}$ randomly
 - $v^{(t+1)} = \beta v^{(t)} g'_i(x^{(t)})$
 - $x^{(t+1)} = x^{(t)} + \alpha v^{(t+1)}$
- Advantages:
 - Momentum advantages (handling ill-conditioning, accelerating)
 - Information from previous gradients contribute (variance of stochastic gradient reduced)

Accelerated stochastic steepest ascent (adding momentum)

- Both hyperparameters α , β may depend on iteration number
- Iteration:
 - Choose $i \in \{1, ..., n\}$ randomly
 - $v^{(t+1)} = \beta^{(t)} v^{(t)} g'_i(x^{(t)})$
 - $x^{(t+1)} = x^{(t)} + \alpha^{(t)} v^{(t+1)}$
- Changing hyperparameters:
 - $\beta^{(t)}$ usually increased with t, common values 0.5 to 0.99
 - $\alpha^{(t)}$ is decreased with t
 - Decreasing $\alpha^{(t)}$ more important than changing $\beta^{(t)}$

- Stochastic steepest descent:
 - Choose $i \in \{1, ..., n\}$ randomly
 - $x^{(t+1)} = x^{(t)} \alpha^{(t)} g'_i(x^{(t)})$
- $\alpha^{(t)}$ is now adapted <u>automatically based on previous iterations</u> and <u>separately for each dimension</u>
- If previous gradients in a dimension were large, we want to reduce

step size more

· AdaGrad:

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} - \operatorname{diag}(\boldsymbol{\alpha}^{(t)}) \boldsymbol{g}'_{i}(\boldsymbol{x}^{(t)})$$
 with vector $\boldsymbol{\alpha}^{(t)}$

•
$$\alpha_j^{(t)} = \alpha / \sqrt{\epsilon + \sum_{k=1}^t (g'_{j,k})^2}$$

- $g'_{i,k}$ is jth partial derivative of gradient in iteration k
- ϵ is small constant (e.g. 1e-8)
- A default value $\alpha = 0.01$ is a popular choice

- AdaGrad:
 - Choose $i \in \{1, ..., n\}$ randomly

•
$$x^{(t+1)} = x^{(t)} - \text{diag}(\alpha^{(t)}) g'_i(x^{(t)})$$

•
$$\alpha_j^{(t)} = \alpha / \sqrt{\epsilon + \sum_{k=1}^t (g'_{j,k})^2}$$

- Disadvantage: $\alpha_i^{(t)}$ can only decrease
- AdaDelta:

•
$$\alpha_j^{(t)} = \alpha / \sqrt{\epsilon + h_j^{(t)}}$$

• $h_j^{(t)} = \gamma h_j^{(t-1)} + (1-\gamma)(g_{j,t}')^2$ (exponential smoothing of earlier partial derivatives; popular choice of γ is around 0.9)

 $\hat{\boldsymbol{m}}_t = \boldsymbol{m}_t/(1-\beta_1^t)$

 $\widehat{\boldsymbol{v}}_t = \boldsymbol{v}_t/(1-\beta_2^t)$

Stochastic steepest descent: adaptive step sizes

- AdaDelta:
 - Random $i \in \{1, ..., n\}; x^{(t+1)} = x^{(t)} \text{diag}(\alpha^{(t)}) g'_i(x^{(t)})$

•
$$\alpha_j^{(t)} = \alpha / \sqrt{\epsilon + h_j^{(t)}}$$
; $h_j^{(t)} = \gamma h_j^{(t-1)} + (1 - \gamma)(g'_{j,t})^2$

- Adam ("Adaptive moment estimation")
 - Random $i \in \{1, ..., n\}; x^{(t+1)} = x^{(t)} \text{diag}(\alpha^{(t)}) \hat{m}_t$;
 - $m_t = \beta_1 m_{t-1} + (1 \beta_1) g'_{i(t)} (x^{(t)})$

•
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2)((g'_{i,t})^2)_{i=1,\dots,p}$$

•
$$\alpha_j^{(t)} = \alpha/\sqrt{\epsilon + \hat{v}_{j,t}}$$

• Default values
$$\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}$$

- Momentum method can be added to AdaGrad and AdaDelta
- AdaGrad works well for convex functions
- AdaDelta handles non-convex functions better
- In Adam, momentum method already included

Steepest descent - comparisons of methods

- Animated comparisons:
 - https://imgur.com/a/Hqolp

Stochastic steepest descent

- Going back to the stochastic steepest descent (with non-adaptive step sizes)
- Iteration:
 - Choose $i \in \{1, ..., n\}$ randomly

•
$$x^{(t+1)} = x^{(t)} - \alpha_t g'_i(x^{(t)})$$

- α_t is a predefined sequence, either
 - constant step size $\alpha_t = \alpha$ or
 - decreasing step size e.g. $\alpha_t = \alpha/t$

- Convergence (to a local maximum) can be shown if step size fulfils $\sum_{t=1}^{\infty} \alpha_t = \infty$ and $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$ (example: $\alpha_t = \alpha/t$)
- Now: Looking closer into the convergence properties, "Convergence analysis"

Stochastic steepest descent (SSD)

- Function to be **minimised**: $g = \frac{1}{n} \sum_{i=1}^{n} g_i$
- Predefined sequence of step sizes: α_t , t = 1,2,...
- Starting value: $x^{(0)}$
- Sequence of random numbers: $R^{(t)} \in \{1, ..., n\}, t = 1, 2, ...$
- Iteration: $x^{(t+1)} = x^{(t)} \alpha_t g'_{R(t)}(x^{(t)})$
- We assume in the lecture: $R^{(t)}$ uniformly distributed on $\{1, ..., n\}$, all $R^{(t)}$ independent
- We note that $Eg'_{R(t)}(x^{(t)}) = g'(x^{(t)})$

Lipschitz continuous functions

• A function f is called *Lipschitz continuous* with Lipschitz constant L>0, if for all $X_1, X_2,$

$$||f(\mathbf{x}_1) - f(\mathbf{x}_2)||_2 \le L \cdot ||\mathbf{x}_1 - \mathbf{x}_2||_2.$$

- If $f:(a,b) \to \mathbb{R}$ is differentiable, the following is true: f Lipschitz continuous with constant L if and only if $|f'(x)| \le L$ for all x
- Example: $1/(1+\exp(-x))$ is Lipschitz continuous with L=0.25
- Example: 1/x is not Lipschitz continuous on $(0,\infty)$

• If f has a derivative (gradient) f' which is Lipschitz continuous with L>o, then f itself is called *L-smooth*. Further,

$$f(\mathbf{x}_1) - f(\mathbf{x}_2) \le f'(\mathbf{x}_2)^T (\mathbf{x}_1 - \mathbf{x}_2) + \frac{L}{2} \cdot ||\mathbf{x}_1 - \mathbf{x}_2||_2^2.$$

SSD's expected decrease per iteration

• Minimisation of $g = \frac{1}{n} \sum_{i=1}^{n} g_i$ with SSD

$$\boldsymbol{x^{(t+1)}} = \boldsymbol{x^{(t)}} - \alpha_t \boldsymbol{g'}_{R(t)} (\boldsymbol{x^{(t)}})$$
 (SSD)

• <u>Lemma 1 (Bottou et al)</u>: Let g be L-smooth with L>0. Given $\mathbf{x}^{(t)}$, the expected decrease in an SSD iteration is bounded:

$$E[g(\mathbf{x}^{(t+1)})] - g(\mathbf{x}^{(t)}) \le -\alpha_t \|g'(\mathbf{x}^{(t)})\|_2^2 + \alpha_t^2 E \|g'_{R(t)}(\mathbf{x}^{(t)})\|_2^2$$

26

SSD's expected decrease per iteration

• <u>Detailed proof of Lemma 1 (Bottou et al):</u> We have:

$$\boldsymbol{x^{(t+1)}} = \boldsymbol{x^{(t)}} - \alpha_t \boldsymbol{g'}_{R(t)} (\boldsymbol{x^{(t)}})$$
(SSD)

$$g(x_1) - g(x_2) \le g'(x_2)^T (x_1 - x_2) + \frac{L}{2} \cdot ||x_1 - x_2||_2^2 \text{ for all } x_1, x_2$$
 (Lsmooth)

R(t) uniformly distributed on $\{1, ..., n\}$ (R)

Using (Lsmooth) for
$$x_1 = x^{(t+1)}$$
 and $x_2 = x^{(t)}$ (conditional on $R^{(t)}$ and $x^{(t)}$), $g(x^{(t+1)}) - g(x^{(t)}) \le g'(x^{(t)})^T (x^{(t+1)} - x^{(t)}) + \frac{L}{2} \cdot ||x^{(t+1)} - x^{(t)}||_2^2$

• Using (SSD),

$$= \boldsymbol{g}'(\boldsymbol{x}^{(t)})^{T} \left(-\alpha_{t} \boldsymbol{g}'_{R(t)}(\boldsymbol{x}^{(t)})\right) + \frac{L}{2} \cdot \left\|\alpha_{t} \boldsymbol{g}'_{R(t)}(\boldsymbol{x}^{(t)})\right\|_{2}^{2}$$

$$= -\alpha_{t} \boldsymbol{g}'(\boldsymbol{x}^{(t)})^{T} \boldsymbol{g}'_{R(t)}(\boldsymbol{x}^{(t)}) + \alpha_{t}^{2} \cdot \left\|\boldsymbol{g}'_{R(t)}(\boldsymbol{x}^{(t)})\right\|_{2}^{2}$$

Take expectation over $R^{(t)}$ given $\mathbf{x}^{(t)}$

$$E[g(\mathbf{x}^{(t+1)})] - g(\mathbf{x}^{(t)}) \le -\alpha_t \mathbf{g}'(\mathbf{x}^{(t)})^T E[\mathbf{g}'_{R(t)}(\mathbf{x}^{(t)})] + \alpha_{t\frac{1}{2}}^{2L} E[\|\mathbf{g}'_{R(t)}(\mathbf{x}^{(t)})\|_{2}^{2}]$$

$$= -\alpha_t \|\mathbf{g}'(\mathbf{x}^{(t)})\|_{2}^{2} + \alpha_{t\frac{1}{2}}^{2L} E\|\mathbf{g}'_{R(t)}(\mathbf{x}^{(t)})\|_{2}^{2} \text{ since}$$

$$E\left[g'_{R(t)}(x^{(t)})\right] = \frac{1}{n} \sum_{i=1}^{n} g'_{i}(x^{(t)}) = g'(x^{(t)}) \text{ due to } (R).$$

SSD's expected decrease per iteration

• Minimisation of $g = \frac{1}{n} \sum_{i=1}^{n} g_i$ with SSD

$$\boldsymbol{x^{(t+1)}} = \boldsymbol{x^{(t)}} - \alpha_t \boldsymbol{g'}_{R(t)} (\boldsymbol{x^{(t)}})$$
 (SSD)

• <u>Lemma 1 (Bottou et al)</u>: Let g be L-smooth with L>0. Given $\mathbf{x}^{(t)}$, the expected decrease in an SGD iteration is bounded:

$$E[g(\mathbf{x}^{(t+1)})] - g(\mathbf{x}^{(t)}) \le -\alpha_t \|\mathbf{g}'(\mathbf{x}^{(t)})\|_2^2 + \alpha_t^2 E \|\mathbf{g}'_{R(t)}(\mathbf{x}^{(t)})\|_2^2$$

• Proof idea: We apply the **consequence of L-smoothness** for $x_1 = x^{(t+1)}$ and $x_2 = x^{(t)}$ (conditional on $R^{(t)}$ and $x^{(t)}$),

$$g(x^{(t+1)}) - g(x^{(t)}) \le g'(x^{(t)})^T (x^{(t+1)} - x^{(t)}) + \frac{L}{2} \cdot ||x^{(t+1)} - x^{(t)}||_2^2$$

We use Equation (SSD) above, take expectation over $\mathbf{R}^{(t)}$ (given $\mathbf{x}^{(t)}$ or the history $\mathbf{R}^{(t-1)}$, $\mathbf{R}^{(t-2)}$, ...) and replace $\mathbf{E}\mathbf{g'}_{R(t)}(\mathbf{x}^{(t)})$ by $\mathbf{g'}(\mathbf{x}^{(t)})$. This shows the claim.

SSD's expected decrease per iteration

- Minimisation of $g = \frac{1}{n} \sum_{i=1}^{n} g_i$ with SSD $\mathbf{x^{(t+1)}} = \mathbf{x^{(t)}} \alpha_t \mathbf{g'}_{R(t)}(\mathbf{x^{(t)}})$
- <u>Lemma 2 (Bottou et al)</u>: Let *g* be L-smooth with L>0 and we have following second moment condition:

$$E \| \boldsymbol{g}'_{R(t)}(\boldsymbol{x}^{(t)}) \|_2^2 \le s + w \| \boldsymbol{g}'(\boldsymbol{x}^{(t)}) \|_2^2 \text{ for all } t.$$
 Given $\mathbf{x}^{(t)}$, the expected decrease in an SSD iteration is bounded:
$$E[\boldsymbol{g}(\boldsymbol{x}^{(t+1)})] - \boldsymbol{g}(\boldsymbol{x}^{(t)}) \le -\alpha_t (1 - \alpha_t L w/2) \| \boldsymbol{g}'(\boldsymbol{x}^{(t)}) \|_2^2 + \alpha_t^2 \frac{Ls}{2}$$

• Proof: Follows directly from Lemma 1:

$$E[g(\mathbf{x}^{(t+1)})] - g(\mathbf{x}^{(t)}) \le -\alpha_t \|\mathbf{g}'(\mathbf{x}^{(t)})\|_2^2 + \alpha_t^2 E \|\mathbf{g}'_{R(t)}(\mathbf{x}^{(t)})\|_2^2 \\ \le -\alpha_t \|\mathbf{g}'(\mathbf{x}^{(t)})\|_2^2 + \alpha_t^2 E \|\mathbf{g}'_{R(t)}(\mathbf{x}^{(t)})\|_2^2$$

Strongly convex functions

• A differentiable function f is called *m-strongly convex* with m>0, if for all $\mathbf{X}_1, \mathbf{X}_2$,

$$(f'(x_1) - f'(x_2))^T(x_1 - x_2) \ge m \cdot ||x_1 - x_2||_2^2.$$

- For one-dimensional functions: $(f'(x_1) f'(x_2))/(x_1 x_2) \ge m$ for all x_1, x_2 .
- The function $f(x)=x^2$ is m-strongly convex with m=2
- The function $f(x)=\exp(x)$ is convex but not m-strongly convex since for $x \to -\infty$, smaller and smaller m would be necessary; no m>0 can be found to fulfil condition above

Strongly convex functions

• A differentiable function f is called *m-strongly convex* with m>0, if for all $\mathbf{x}_1, \mathbf{x}_2$,

$$(f'(x_1) - f'(x_2))^T(x_1 - x_2) \ge m \cdot ||x_1 - x_2||_2^2.$$

An equivalent condition is

$$(f(\mathbf{x}_1) - f(\mathbf{x}_2)) \ge f'(\mathbf{x}_2)^T (\mathbf{x}_1 - \mathbf{x}_2) + \frac{m}{2} \cdot ||\mathbf{x}_1 - \mathbf{x}_2||_2^2.$$

• An m-strongly convex function f has a unique minimum \mathbf{x}^* and the following holds true:

$$2m(f(\mathbf{x}) - f(\mathbf{x}^*)) \le ||f'(\mathbf{x})||_2^2.$$

Assumptions

- Assumptions (A):
 - *g* is differentiable and L-smooth with L>0,
 - *g* is m-strongly convex with m>0
 - For all \mathbf{x} : $\mathbb{E} \| \boldsymbol{g'}_{R(t)}(\boldsymbol{x}) \|_{2}^{2} \le s + w \| \boldsymbol{g'}(\boldsymbol{x}) \|_{2}^{2}$
- Assumptions (B):
 - g_i are differentiable and L-smooth with $L_i > 0$,
 - *g* is m-strongly convex with m>0
 - $E \| \boldsymbol{g'}_{R(t)}(\boldsymbol{x}^*) \|_2^2 = s$

Convergence analysis for fixed step size

• Theorem 1 (Bottou et al): Consider the finite sum case of the optimization problem, assume Assumptions (A) and that the step size is constant, $\alpha_t = \alpha \le 1/\{L \max(w, 1)\}$. Then, we have the following convergence result:

$$E[g(\mathbf{x}^{(t)})] - g(\mathbf{x}^*) \le \frac{\alpha L s}{2m} + (1 - \alpha m)^t \{g(\mathbf{x}^{(0)}) - g(\mathbf{x}^*) - \frac{\alpha L s}{2m}\}$$

• Proof: Based on Lemma 2, see Bottou et al (2018), https://arxiv.org/pdf/1606.04838.pdf

Convergence analysis for fixed step size

• Theorem 2 (Needell et al): Consider the finite sum case of the optimization problem, assume Assumptions (B) and that the step size is constant, $\alpha_t = \alpha \leq \frac{1}{\max(L_i)}$. Then, we have the following convergence result:

$$\mathbb{E} \| \boldsymbol{x}^{(t)} - \boldsymbol{x}^* \|_2^2 \le \frac{\alpha s}{m\{1 - \alpha \max(L_i)\}} + (1 - \alpha m\{1 - \alpha \max(L_i)\})^t \| \boldsymbol{x}^{(0)} - \boldsymbol{x}^* \|_2^2$$

• Proof: See Needell et al (2016), here an arXiv version:

https://arxiv.org/abs/1310.5715

Theoretical behaviour of above bound for expected distance to optimum for s=0.5, m=2, $max(L_i)=2$, $\epsilon_0 = \|x^{(0)} - x^*\|_2^2 = 1$

Stochastic steepest descent: empirical examples

- Constant step size $\alpha^{(t)} = \alpha$
- Step size
 - $\alpha = 0.0006$ (black)
 - $\alpha = 0.002 \, (\text{red})$
 - $\alpha = 0.006$ (blue)

• Compare with theoretical result:

Theoretical behaviour of above bound for expected distance to optimum for s=0.5, m=2, $max(L_i)=2$, $\epsilon_0 = \|x^{(0)} - x^*\|_2^2 = 1$

Convergence analysis for decreasing step size

• Theorem 3 (Bottou et al): Consider the finite sum case of the optimization problem, assume Assumptions (A) and that the step size is decreasing as $\alpha_t = \frac{\beta}{t+\gamma}$ with $\beta > \frac{1}{m}$, $\gamma > 0$, $\alpha_0 \le 1/\{L \max(w, 1)\}$. Then, we have the following convergence result:

$$E[g(\mathbf{x}^{(t)})] - g(\mathbf{x}^*) \le \nu/(\gamma + t),$$

where

$$\nu = \max \left\{ \frac{\beta^2 LS}{2(\beta m - 1)}, (\gamma + 1)(g(\mathbf{x}^{(0)}) - g(\mathbf{x}^*)) \right\}.$$

• Proof: See Bottou et al (2018), https://arxiv.org/pdf/1606.04838.pdf

Convergence analysis for decreasing step size

Note that

$$\mathrm{E}\big[g\big(\pmb{x}^{(t)}\big)\big] - g(\pmb{x}^*) \approx \nu/(\gamma + t),$$
 means sublinear convergence since

$$\frac{\left\{ \mathbb{E}\left[g(\boldsymbol{x}^{(t+1)})\right] - g(\boldsymbol{x}^*)\right\}}{\left\{ \mathbb{E}\left[g(\boldsymbol{x}^{(t)})\right] - g(\boldsymbol{x}^*)\right\}} \approx \frac{\gamma + t}{\gamma + t + 1} \to 1 \text{ (for } t \to \infty)$$

- A bound like $\mathbf{E}\big[g\big(\pmb{x}^{(t)}\big)\big] g(\pmb{x}^*) \le \nu^t \text{ with } 0 < \nu < 1$ would lead to linear convergence
- So, SSD with $\alpha_t = \frac{\beta}{t+\gamma}$ gives only sublinear convergence

Lipschitz continuous functions and matrix norms

• If f has a Hessian matrix **f**' with a bounded spectral norm (by L), the gradient **f**' is Lipschitz continuous with L:

 $||f''(x)||_{Spectral} \le L$ for all $x \Rightarrow f'$ Lipschitz continuous with L

- Most often when writing $\|\cdot\|$, we have a norm for a vector inside the normsigns (and $\|x\|_2$ can be interpreted as length of vector x)
- There are also matrix-norms, and the spectral norm is one example: $\|A\|_{Spectral} = \sqrt{\lambda_{max}(A^TA)}$ where $\lambda_{max}(\cdot)$ is the largest eigenvalue of the matrix inside
- Spectral norm and Euclidian norm are *compatible* in the sense that for any $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$, we have

$$||Ax||_2 \le ||A||_{Spectral}||x||_2$$

SSD convergence analysis - exercise

Optimisation in a least squares situation,

•
$$g(\mathbf{b}) = \frac{1}{n} ||X\mathbf{b} - \mathbf{y}||_2^2 = \frac{1}{n} \sum_{i=1}^n g_i(\mathbf{b})$$
 with $g_i(\mathbf{b}) = (\mathbf{x}_i^T \mathbf{b} - y_i)^2$

•
$$g'(b) = \frac{2}{n}X^{T}(Xb - y) = \frac{1}{n}\sum_{i=1}^{n} g_{i}'(b)$$
 with $g'_{i}(b) = 2(x_{i}^{T}b - y_{i})x_{i}$

•
$$g''(b) = \frac{2}{n}X^TX$$

R uniformly distributed on {1, ..., n}

Compute for (i) general x_i , (ii) $x_i = \begin{pmatrix} 1 \\ w_i \end{pmatrix}$ (straight line regression):

a)
$$\|{\bf g}_i{'}({\bf b})\|_2^2 =$$

b)
$$E \| \boldsymbol{g}_R'(\boldsymbol{b}) \|_2^2 =$$

Compute for general x_i , X:

c)
$$E[g'_{R}(b)] =$$

d)
$$\|\boldsymbol{g}''(\mathbf{b})\|_{\text{Spectral}} =$$

SSD convergence analysis - exercise

Optimisation in a least squares situation,

•
$$g(\mathbf{b}) = \frac{1}{n} ||X\mathbf{b} - \mathbf{y}||_2^2 = \frac{1}{n} \sum_{i=1}^n g_i(\mathbf{b}) \text{ with } g_i(\mathbf{b}) = (\mathbf{x}_i^T \mathbf{b} - \mathbf{y}_i)^2$$

•
$$g'(b) = \frac{2}{n}X^{T}(Xb - y) = \frac{1}{n}\sum_{i=1}^{n} g_{i}'(b)$$
 with $g'_{i}(b) = 2(x_{i}^{T}b - y_{i})x_{i}$

•
$$g''(b) = \frac{2}{n}X^TX$$

R uniformly distributed on $\{1, ..., n\}$ Compute for (i) general x_i , (ii) $x_i = \begin{pmatrix} 1 \\ w_i \end{pmatrix}$ (straight line regression):

a)
$$\|\boldsymbol{g}_i'(\boldsymbol{b})\|_2^2 = 4(\mathbf{x}_i^T\mathbf{b} - \mathbf{y}_i)^2 \mathbf{x}_i^T \mathbf{x}_i = 4(b_1 + b_2 w_i - y_i)^2 (1 + w_i^2)$$

b)
$$E\|\boldsymbol{g}_{R}'(\boldsymbol{b})\|_{2}^{2} = \frac{1}{n}\sum_{i}\|\boldsymbol{g}_{i}'(\boldsymbol{b})\|_{2}^{2} = ...$$

Compute for general x_i, X :

c)
$$E[g'_{R}(\mathbf{b})] = \frac{1}{n} \sum_{i} g'_{i}(\mathbf{b}) = g'(\mathbf{b}) = ...$$

d)
$$\|\boldsymbol{g}''(\mathbf{b})\|_{\text{Spectral}} = \frac{2}{n} \sqrt{\lambda_{\text{max}} \left((X^T X)^T (X^T X) \right)} = \frac{2}{n} \lambda_{\text{max}} (X^T X)$$

Maximum likelihood estimator (MLE)

- The MLE is solution of $g(\widehat{\boldsymbol{\beta}}) = \max g(\boldsymbol{b})$ with $g(\widehat{\boldsymbol{\beta}}) = \log-\text{likelihood}(\widehat{\boldsymbol{\beta}}, \boldsymbol{X}, \boldsymbol{y}) = \sum_{i=1}^{n} \log-\text{likelihood}(\widehat{\boldsymbol{\beta}}, \boldsymbol{x}_i, y_i)$ (the latter equation requires independence of observations)
- In the simple case of normally distributed observations, MLE=LSE and we have an algebraic solution
- Otherwise, we need usually iterative methods to compute the MLE
- If the data is from an exponential family, the function g is concave (-g is convex)

