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Course schedule

 Topic 1: Gradient based optimisation

 Topic 2: Stochastic gradient based optimisation
» Topic 3: Gradient free optimisation

» Topic 4: Optimisation with constraints

 Topic 5: EM algorithm and bootstrap

* Topic 6: Simulation of random variables

» Topic 7: Importance sampling

Course homepage:
http://www.adoptdesign.de/frankmillereu/adcompstat2023.html

Includes schedule, reading material, lecture notes, assignments
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Advanced computational statistics L2

Today’s schedule

2023-03-17

» Stochastic steepest descent (SSD; Stochastic gradient descent; SGD)

« Idea and issues

* Choice of step size

» Mini-batches

« Convergence analysis

 Exercise session

Note: Changed to descent
and minimisation problem
here to correspond to most
literature, but this is no
essential change.
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Steepest descent

 Optimisation problem:
« x p-dimensional vector, g: RP - R function
* We search x* with g(x*) = min g(x)

 Steepest descent:

» Tteration: x¢*D = x® — o® g'(x®)
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Steepest descent

+ Tteration: x¢* D = x® — o g'(x®)

« Optimisation problem (finite sum case):
» x p-dimensional vector, g;: RP - R functions
« We search x* with g(x*) = min g(x) where g = }.}", g;

« If n large: Takes time to evaluate gradient g’ = Y™ , g’;

LINKOPING
II." UNIVERSITY



Advanced computational statistics L2 2023-03-17 6

Stochastic steepest descent

 Jteration:
* Choose i € {1, ...,n} randomly

« Xt = xO _ 4O g7 (xO)

 al® is a predefined sequence, either
« constant step size al) = q or
« decreasing step size e.g. alt) = a/t

* Convergence (to a local minimum) can be shown if step size fullfills
Y2, a®) = o0 and Y2, (al?)? < oo (example: al®) = a/t)
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Stochastic steepest descent

« Constant step size alt) = « can still make sense if
 Another algorithm is run afterwards, or
« If good but not necessarily best solution desired

 Choice of step size is critical

- Example: Two-parameter MLE computation (large n)
Computation of MLE for a model with two parameters and n = 1 000 000.
Starting value is not too good (has some distance to correct MLE). We monitor:

« distance of current log likelihood to maximal log likelihood,
 search path in 2d parameter space.
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Stochastic steepest descent: choice of step size

10000

Example: Two-parameter MLE computation (large n)

5000

Constant step size al®) = «

2000

Choice of step size is critical

Step size here: . g
* a = 0.0006 (black) : . J
+ @ = 0.002 (red) Wi

* a = 0.006 (blue)

dist; to best log-likelihood
1000

500

200

T T
0 1000 2000 3000 4000 5000

lteration

If you have time for 5000 iterations: which step size is best?

If you have only time for 500 iterations?

If you have time for 50000 iterations?
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Stochastic steepest descent: choice of step size

- Example: Two-parameter MLE computation (large n)
Search path in the 2d parameter space

* 100 000 iterations, 1 000 00O Iterations,
a = 0.002, a = 0.0006 a = 0.0006

}

Starting value
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Stochastic steepest descent

« Influence of step size can be investigated at
http://fa.bianp.net/teaching/2018/COMP-
652/stochastic gradient.html (Fabia Pedregosa, Nov 2018)
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Stochastic steepest descent: choice of step size

» Goodfellow et al., 2016, Chapter 8.3.1 (notation adjusted):

» “In practice, it is common to decay the learning rate [=step size a(®]
linearly until iteration 7: a® = (1 —y)ay + ya, withy = % After
iteration 7, it is common to leave a constant.”

* Choice of step size “is more of an art than a science, and most
guidance on this subject should be regarded with some skepticism.”

* Choose 7 “to make a few hundred passes through the training set.”
*a, = ay/100

* Choose a, avoiding violent oscillations and too low learning rate
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(Stochastic) steepest descent: running time

‘mw

T
0 1000 2000 3000 4000 5000

» Stochastic steepest ascent
could run 3320 iterations when
steepest ascent could run 1 iteration

« Example: Two-parameter MLE
computation (large n)

5000 10000

 Stochastic steepest ascent:
50000 iterations took 7 s

2000

distance to best log-likelihood
1000

* Steepest ascent with
alpha-halving: 112 iterations
took 52 s

500

200
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Stochastic steepest descent: mini-batches

- Instead of sampling a single i, a batch of size m can be sampled in each
iteration

e Iteration:
* Choose {i4, ...,i;,} € {1, ...,n} randomly
c Xt = 3O _ (O YT g, (xO)

» Decreases risk of large random oscillations

 Especially interesting when algorithm performed on a parallel computer
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Accelerated stochastic steepest descent
(adding momentum)

- Stochastic steepest descent x*D = x® — og’;(x(9)) can be combined

with momentum method (see Goodfellow, Bengio, Courville, 2016,
Chapter 8.3.2)

e Jteration:
* Choose i € {1, ...,n} randomly
e pt+D) — ,Bv(t) _ g'i(x(t))
° x(t+1) = x(t) _|_ av(t-l'l)

« Advantages:
« Momentum advantages (handling ill-conditioning, accelerating)

 Information from previous gradients contribute (variance of stochastic
gradient reduced)
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Accelerated stochastic steepest ascent
(adding momentum)

* Both hyperparameters o, f may depend on iteration number

 Jteration:
* Choose i € {1, ...,n} randomly
o pt+D) = RO _ g'i(x(t))
° x(t+1) — x(t) _|_ a(t)v(t'l'l)

« Changing hyperparameters:
B usually increased with ¢, common values 0.5 to 0.99
 a(® is decreased with t
» Decreasing o) more important than changing g
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Stochastic steepest descent: adaptive step sizes

» Stochastic steepest descent:
* Choose i € {1, ...,n} randomly

¢ Xt = 3O _ q© g7 (x©O)

« a® is now adapted automatically based on previous iterations and
separately for each dimension

» If previous gradients in a dimension were large, we want to reduce
step size more
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Stochastic steepest descent: adaptive step sizes

- AdaGrad:
x(E+D = x® — diag(a®)g’;(x¥) with vector a®

o = 0/ [+ Bs (9]

* g; is j'" partial derivative of gradient in iteration k

* ¢ is small constant (e.g. 1e-8)

A default value a« = 0.01 is a popular choice
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Stochastic steepest descent: adaptive step sizes

« AdaGrad:
* Choosei € {1, ...,n} randomly

o x(t‘l'l) — x(t) — dlag(a(t))g'l(x(t))

. a}?’f) =a/ \/e + X i=1(gj )?

 Disadvantage: a? can only decrease

J
« AdaDelta:
. a.(t) = a/\/e + h@
. h@ yhi" ™ + (1= y)(g))?

(exponentlal smoothing of earlier partial derivatives; popular choice of y is
around 0.9)
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Stochastic steepest descent: adaptive step sizes

« AdaDelta:
» Random i € {1, ...,n}; (™D = xU — diag(a®) g’;(xV)

a® = a/Je + 175 1 = yhTY + (1 - y)(g))?

« Adam ("Adaptive moment estimation”)
« Random i € {1, ..., n}; x(t*D = x® — diag(a(t))ﬁlt ;
* M = fime_y + (1= B i (x?) =m./(1-p1)
* v = Bove g + (1= B2)((9;0)%)j=1,..0 =v:/(1 - B3)
) aj(t) = a/\Je+ 0,

e Default values g; = 0.9,5, = 0.999,¢ = 1078
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Stochastic steepest descent: adaptive step sizes

« Momentum method can be added to AdaGrad and AdaDelta
 AdaGrad works well for convex functions
« AdaDelta handles non-convex functions better

e In Adam, momentum method already included
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Steepest descent - comparisons of methods

« Animated comparisons:
e https://imgur.com/a/Hqolp
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Stochastic steepest descent

» Going back to the stochastic steepest descent (with non-adaptive step sizes)

Iteration: ‘)
e Choosei € {1, ...,n} randomly

«“ |

° x(t+1) — x(t) —_ atg’i(x(t)) o

a, is a predefined sequence, either £
 constant step size a; = a or
 decreasing step size e.g. a; = a/t

1.0

0.8

Convergence (to a local maximum) can be shown if step size fulfils }.;72; a; = o
and Y2, aZ < oo (example: a; = a/t)

Now: Looking closer into the convergence properties, “Convergence analysis”
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Stochastic steepest descent (SSD]

» Function to be minimised: g = -}, g;
 Predefined sequence of step sizes: a;, t = 1,2, ...
» Starting value: x(®

» Sequence of random numbers: R® € {1,...,n}, t = 1,2, ...

e Tteration: x(¢+tD = x® _ atg’R(t) (x(t))

« We assume in the lecture;:
R® uniformly distributed on {1, ..., n}, all R® independent

- We note that Eg'z (V) = g'(x?)
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Lipschitz continuous functions

« A function f is called Lipschitz continuous with Lipschitz constant L>0, if for all

X5 X0

If (x1) — F(x)Il2 < L - [lxg — x2]l2.
« If f: (a, b) — Ris differentiable, the following is true:

f Lipschitz continuous with constant L if and only if |f'(x)|<L for all x

o If f has a derivative (gradient) f which is Lipschitz continuous with L>0, then f

« Example: 1/(1+exp(-x)) is
Lipschitz continuous with L=0.25

« Example: 1/x is not Lipschitz
continuous on (0,®)

itself is called L-smooth. Further,

2023-03-17
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flx) — fx) < fr(x)" (g — x3) + % lxg = 2215,
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SSD’s expected decredse per iteration

» Minimisation of g = = ; g; with SSD
xTtD — 5 (O _ atg'R(t) (x(t)) (SSD)

« Lemma 1 (Bottou et al): Let g be L-smooth with L>0. Given x®, the
expected decrease in an SSD iteration is bounded:

Elg(x**P)] - g(x9) < ~a|lg'(xO); + aZ3E [l gren (xO)II,
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SSD’s expected decrease per iteration

Detailed proof of Lemma 1 (Bottou et al): We have:

x(t+1) p— x(t) — atg,R(t) (x(t)) (SSD)
g(x) —g(xz) < g'(x)" (x; —x2) + % %1 — x,||5 for all x4, x, (Lsmooth)
R(t) uniformly distributed on {1, ..., n} (R)

Using (Lsmooth) for x; = x®*V and x, = x® (conditional on R® and x®),
g(0) ~ g(x) = g/ (xO) (x4 — x0) 4 £- 64D — 2O

Using (SSD), . ,
= g'(x®) (~aeg'ry(¥®@)) + £+ laeg'reey (x|

= —atg'(x(t))Tg'R(t)(x(t)) + o3 - ||9'R(t)(x(t))||§

Take expectation over R® given x®
T , 2
E[g(x®*D)] - g(x©®) < —a.g' (x®) E |g’ 0y (x@)| + oZ2E ||| gey (x|

— —allg' <O + 22 g (x| sinee

E [0 po(3)] = 132, 9/, (x©) = g/ (x©) due to (R). a
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SSD’s expected decredse per iteration

* Minimisation of g = - Y, g; with SSD
x(t+1) — x(t) — atg,R(t) (x(t)) (SSD)

« Lemma 1 (Bottou et al): Let g be L-smooth with L>0. Given x, the expected decrease in
an SGD iteration is bounded:

E[g(xD)] - g(x®) < —arl|g'(xO); + a?3E | gres (=),

« Proof idea: We apply the consequence of L-smoothness for x; = x(** and x, = x®
(conditional on R® and x®),

g(x®D) — g(x®) < gr(xu))T(x(m) — x®) 4 L. ||+ D - x(t)”i
We use Equation (SSD) above, take expectation over R® (given x® or the history
R®D, Rt2) ) and replace Eg'g(x®) by g'(x?)). This shows the claim. 0
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SSD’s expected decrease per iteration

» Minimisation of g = -}, g; with SSD
D = x® — g g0 (x©)

« Lemma 2 (Bottou et al): Let g be L-smooth with L>0 and we have
following second moment condition:

E|| gy (@) < s+ wlg'(x®)|| for all ¢
Given x®, the expec%ed decrease in an SSD iteration is bouznded:
Elg(x** V)] - g(x?) < —o,(1 — e Lw/2) || g'(x D) + af3

 Proof: Follows directly from Lemma 1:

! 2 !/ 2
E[g(x*)] = g(x') < ~ae||g'(x)], + at3E||greey (),

< ~a|lg' GO, + i (s +wllg'x9)];) o

28
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Strongly convex functions

« A differentiable function f is called m-strongly convex with m>o, if for all

X, X,,
(f'(x1) — f'(x))" (21 —x3) =m - |lx; — x5
* For one-dimensional functions:
(f’(xl) o f,(xZ))/(xl o xZ) = m for all X1y Xo-

 The function f(x)=x? is m-strongly T
convex with m=2 . \/
 The function f(x)=exp(x) is convex but N | | | |

not m-strongly convex since for x —» —oo,
smaller and smaller m would be
necessary; no m>0 can be found to fulfil
condition above
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Strongly convex functions

» A differentiable function f is called m-strongly convex with m>o, if for all
Xl) X2)
(f'(x1) = f'(x2))" (x1 — x3) =2 m - lxg — x,]15.

« An equivalent condition is
(f(x) = F(x2)) = f(x2) (1 — x2) + 5+ 12 — x5,

« An m-strongly convex function f has a unique minimum x* and the
following holds true:

2m(f (x) = f(x9) < |If ()13
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Assumptions

e Assumptions (A):
* g is differentiable and L-smooth with L>0,
* g is m-strongly convex with m>o0
!/ 2 !/
- For all x: E||g R(t)(x)”z <s+wlg' ®l53

e Assumptions (B):
* g; are differentiable and L-smooth with L; > 0,
* g is m-strongly convex with m>0

= S

* E”g,R(t)(x*) z

2023-03-17 31
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Convergence analysis for fixed step size

» Theorem 1 (Bottou et al): Consider the finite sum case of the
optimization problem, assume Assumptions (A) and that the step
size is constant, a; = a < 1/{L max(w, 1)}. Then, we have the

following convergence result:
E[g(x(t))] gx*) <5+ (1 — am)t {g(x(o)) g(x*) — a_Ls

—Zm

* Proof: Based on Lemma 2, see Bottou et al (2018),
https://arxiv.org/pdf/1606.04838.pdf
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Convergence analysis for fixed step size

* Theorem 2 (Needell et al): Consider the finite sum case of the optimization
problem, assume Assumptions (B) and that the step size is constant, a; =

a < ma;(L_). Then, we have the following convergence result:
El[x® — x , < m{l_aﬁax(m} + (1 — am{1 — a max(L;)}||x» — x 2

* Proof: See Needell et al (2016), here an arXiv version:
https://arxiv.org/abs/1310.5715

— w=0.2
o=0.1
\\ T a0 Theoretical behaviour of
above bound for expected
\ distance to optimum for

$s=0.5, m=2, max(L,)=2,
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2 1
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0 50 100 150 200 £,= ”x(O) — x*
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Stochastic steepest descent. empirical examples

‘mw

0 1000 2000 3000 4000 5000

* Compare with theoretical result:

w02 Theoretical behaviour of
\\ e above bound for expected
distance to optimum for
\ $S=0.5, m=2, me;x(Li)=2,

g,= |[x® — x*||] =1

1000

» Constant step size al¥) = «

5000

* Step size
« « = 0.0006 (black)
* a =0.002 (red)
* a = 0.006 (blue)

2000

distance to best log-likelihood
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Convergence analysis for decreasing step size

» Theorem 3 (Bottou et al): Consider the finite sum case of the optimization
problem, assume Assumptions (A) and that the step size is decreasing as
a; = % with > -, y > 0, ap < 1/{L max(w, 1)}. Then, we have the

following convergence result:
E[g(x®)] = g(x") <v/(y + 1),

where

v =max {51 (v + D (g(x@) — g(x"))}.

 Proof: See Bottou et al (2018), https://arxiv.org/pdf/1606.04838.pdf
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Convergence analysis for decreasing step size

* Note that

E[g(x)] —g(x) = v/(y + 1),
means sublinear convergence since

Elg)] -9} .,
{E[g(x®)] — g(xr)}  ¥*iHl

— 1 (fort — o0)

* A bound like
E[g(x®)] —g(x*) < vt with0<v <1
would lead to linear convergence

* So, SSD with a; = % gives only sublinear convergence
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Lipschitz continuous functions and matrix norms

o If f has a Hessian matrix £’ with a bounded spectral norm (by L), the
gradient £ is Lipschitz continuous with L:

If"" (%) lspectrar < L for all x= f’Lipschitz continuous with L

« Most often when writing ||:||, we have a norm for a vector inside the norm-
signs (and ||x||, can be interpreted as length of vector x)

 There are also matrix-norms, and the spectral norm is one example:
IAllspectrar = VAmax (AT A) where A,,,,,. () is the largest eigenvalue of the
matrix inside

« Spectral norm and Euclidian norm are compatible in the sense that for any
A € R™" and x € R™, we have

1Ax|l2 < [|Allspectrarllxll2
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SSD convergence analysis - exercise

Optimisation in a least squares situation,

+ g(b) = IXb - ylI3 =TI, g:(b) with g;(b) = (b - ;)’

* g'(b) =2X"(Xb —y) = - XL, g;'(b) with gi(b) = 2(x{ b — y;)x;
« g"(b) =2X"X

R uniformly distributed on {1, ..., n}

Compute for (i) general x;, (ii) x; = ( ) (straight line regression):

a) llgi'MI3 =

b) Ellgr' (b)ll3 =
Compute for general x;, X:
¢) E[gr(b)] =

d) lg" (b)llspectral =

l
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SSD convergence analysis - exercise

Optimisation in a least squares situation,

+ g(b) = :IIXb—yli3 = ' X, gi(b) with g;(b) = (xTb - y,)"

* g'(b) =2X"(Xb —y) = - 31, gi'(b) with g;(b) = 2(x{ b — y))x;
- g"(b) ="X"X

R uniformly distributed on {1, ..., n}
Compute for (i) general x;, (ii) x; = (

) (straight line regression):
l

, 2
a) g/ I = 4(x{'b —y;) x{ x; = 4(by + byw; — y)*(1 + wf)

b) Ellgr' ®)II3 =~;llg: B)lI3=...
Compute for general x;, X:

¢) Elgr®)] ==%,;g{(b) = g'(b) = ..
2

D 19" ®llspectrar =2 s (TXTGHTH0) = 2 20000 (XTX)

n
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Maximum likelihood estimator (MLE)

- The MLE is solution of g(B) = max g(b) with

g(ﬁ) = log—likelihood(ﬁ, X, y) =Y log—likelihood(ﬁ, xi,yi)
(the latter equation requires independence of observations)

* In the simple case of normally distributed observations, MLE=LSE and we
have an algebraic solution

« Otherwise, we need usually iterative methods to compute the MLE

» If the data is from an exponential family, the function g is concave (—g is
convex)
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