

Advanced computational statistics, lecture 3

Frank Miller, Department of Computer and Information Science, Linköping University

Department of Statistics; Stockholm University April 4, 2023

Course schedule

- Topic 1: Gradient based optimisation
- Topic 2: Stochastic gradient based optimisation
- Topic 3: Gradient free optimisation
- Topic 4: Optimisation with constraints
- Topic 5: EM algorithm and bootstrap
- Topic 6: Simulation of random variables
- Topic 7: Importance sampling

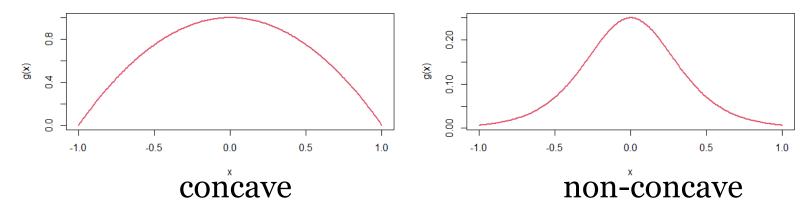
Course homepage:

http://www.adoptdesign.de/frankmillereu/adcompstat2023.html

Includes schedule, reading material, lecture notes, assignments

Convexity / Concavity and log likelihood

• Function g concave, if $g((\mathbf{x}+\mathbf{y})/2) \ge (g(\mathbf{x})+g(\mathbf{y}))/2$ for all \mathbf{x},\mathbf{y}

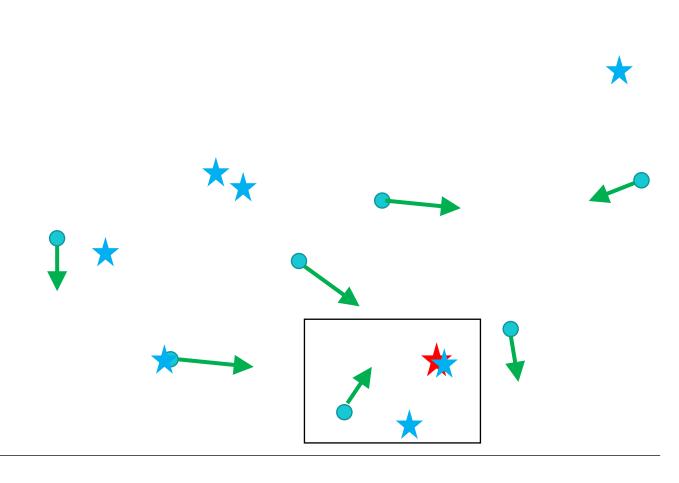


- If *g* is concave, a local maximum is a global maximum
- Log likelihood for exponential families is concave
- Log likelihoods can be non-concave (e.g. Cauchy-distribution in Problem 1.1)
- Deep learning optimisation problems are often non-concave / non-convex and have multiple local extrema

Today's schedule: gradient free methods

- Particle swarm optimisation (PSO)
 - Idea
 - Different versions
 - Theoretical investigations
- Simulated annealing
 - Idea (for the generic optimisation problem)
 - Simulated annealing for combinatorial optimisation
 - Theoretical basis
- To compare algorithms or hyperparameter choices by empirical studies
- Nelder-Mead algorithm

- Swarm of N particles
 - Position of particle i at iteration t+1: $x_i^{(t+1)}$
 - Velocity of particle i at iteration t+1: $v_i^{(t+1)}$
- Best positions found so far:
 - Best location found
- \star by particle i: $p_{\text{best, }i}^{(t)}$
 - Global best solution
- \star found: $oldsymbol{g}_{ ext{best}}^{(t)}$

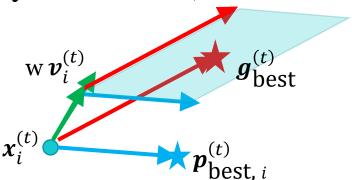


• Movement of particle i at iteration t+1:

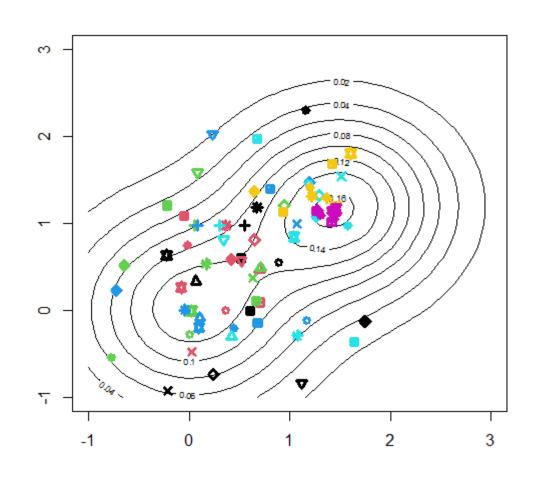
$$\boldsymbol{x}_i^{(t+1)} = \boldsymbol{x}_i^{(t)} + \boldsymbol{v}_i^{(t+1)}$$

$$\boldsymbol{v}_i^{(t+1)} = \boldsymbol{w} \boldsymbol{v}_i^{(t)} + c_1 R_1^{(t+1)} \left(\boldsymbol{p}_{\text{best, }i}^{(t)} - \boldsymbol{x}_i^{(t)} \right) + c_2 R_2^{(t+1)} \left(\boldsymbol{g}_{\text{best}}^{(t)} - \boldsymbol{x}_i^{(t)} \right)$$
inertia weight cognitive component social component

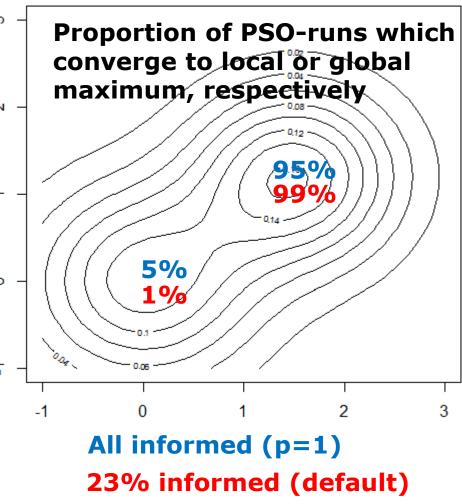
• $R_1^{(t+1)}$ and $R_2^{(t+1)}$ are uniformly distributed, runif ()



- Bimodal normal mixture example from Lecture 1
- PSO with s=12 particles using psoptim (in R-package pso)
 - Iteration 1 (black)
 - Iteration 2 (red)
 - Iteration 3 (green)
 - Iteration 4 (blue)
 - Iteration 5 (light blue)
 - Iteration 20 (yellow)
 - Iteration 40 (pink)



- Bimodal normal mixture example from Lecture 1
- In some runs, the local maximum is identified as global maximum
- Risk to remain at a local maximum can be reduced if not all particles are informed about the global best solution
- Option control=list(p=) controls proportion informed; default 1-(11/12)^3=0.23.




```
• Example call:
                                                    Dimension of problem
pso <- psoptim(par=rep(NA,2),</li>
                                                    Function to optimise
                         fn=g,
                         lower=-1, upper=3,
                                                       Search space
                                                       (using vectors as limits enables different limits for the dimensions)
                         control=list(
                            fnscale=-1, ← For maximisation
  Running time roughly
                          → maxit=1000 , Iteration number; default can be
  linear in each of these
                           p=0.23, Proportion informed
                                                too large in many situations
  two parameters
                                   Swarm size; default can be too low in
                                     some situations
```

• Some further options: $c.p = c_1$ (cognitive comp.), $c.g = c_2$ (social comp.), w = w (inertia weight/exploitation const.), trace = 1 (output of tracing info)

Particle swarm optimisation - versions

- PSO first suggested: 1995 by Kennedy and Eberhart
- Clerc (2016) distinguishes following (main) versions:
 - 1998. A basic version
 - SPSO 2007 ("Standard PSO")
 - SPSO 2011

Particle swarm optimisation – inertia weight

• Movement of particle i at iteration t+1:

•
$$x_i^{(t+1)} = x_i^{(t)} + v_i^{(t+1)}$$

• $v_i^{(t+1)} = w v_i^{(t)} + c_1 R_1^{(t+1)} (p_{\text{best}, i}^{(t)} - x_i^{(t)}) + c_2 R_2^{(t+1)} (g_{\text{best}}^{(t)} - x_i^{(t)})$

- In the first version from 1995, the inertia weight w was not included
- Particle swarm might "explode"
- Explosion can be prevented by introducing maximum velocity
- Alternatively, inertia weight w < 1 can prevent explosion
- Included in basic version from 1998

Particle swarm optimisation – dimensions

- In first versions including 1998-basic version and SPSO 2007, random variables applied for each dimension separately:
 - $\mathbf{v}_{i}^{(t+1)} = \mathbf{w} \mathbf{v}_{i}^{(t)} + c_{1} \mathbf{R}_{1}^{(t+1)} \otimes \left(\mathbf{p}_{\text{best, }i}^{(t)} \mathbf{x}_{i}^{(t)}\right) + c_{2} \mathbf{R}_{2}^{(t+1)} \otimes \left(\mathbf{g}_{\text{best}}^{(t)} \mathbf{x}_{i}^{(t)}\right)$ where \otimes is componentwise multiplication and $\mathbf{R}_{k}^{(t+1)}$ are vectors
- In SPSO 2011, same random variable used for all dimensions leading to movement in hyperspheres:

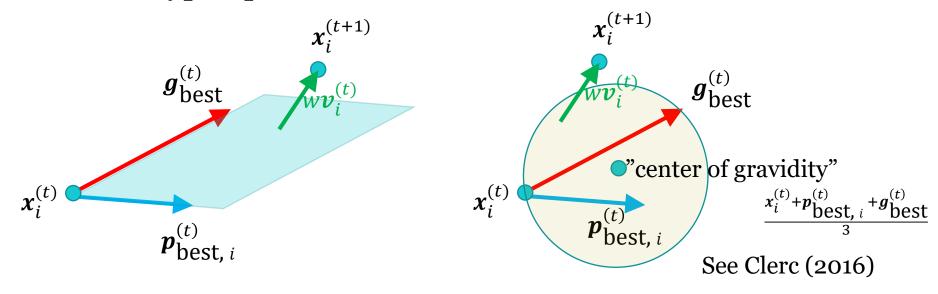
•
$$\mathbf{v}_{i}^{(t+1)} = w\mathbf{v}_{i}^{(t)} + c_{1}R_{1}^{(t+1)} (\mathbf{p}_{\text{best}, i}^{(t)} - \mathbf{x}_{i}^{(t)}) + c_{2}R_{2}^{(t+1)} (\mathbf{g}_{\text{best}}^{(t)} - \mathbf{x}_{i}^{(t)})$$

Particle swarm optimisation – dimensions

• Velocity of particle i at iteration t+1:

•
$$\mathbf{v}_{i}^{(t+1)} = w\mathbf{v}_{i}^{(t)} + c_{1}R_{1}^{(t+1)} (\mathbf{p}_{\text{best}, i}^{(t)} - \mathbf{x}_{i}^{(t)}) + c_{2}R_{2}^{(t+1)} (\mathbf{g}_{\text{best}}^{(t)} - \mathbf{x}_{i}^{(t)})$$

• In SPSO 2011, same random variable used for all dimensions leading to movement in hyperspheres



Particle swarm optimisation – dimensions

- In version SPSO 2011, particles can move only in hyperspace spanned by starting particles
- Disadvantages:
 - If dimension of problem p is large in relation to swarm size s, e.g. p>s, optimisation done only in a subspace and high risk that optimum is missed
 - Even if starting particles well distributed, they might become close to a hyperspace after some iterations
- Advantages:
 - Problem with dependence on coordinate system and with "biased search" is reduced; finds optima along axes and diagonal easier (Clerc, 2016)
 - Linearly constrained problems can easily be handled (see L4)

PSO - choice of hyperparameters

- Velocity of particle i at iteration t+1:
 - $v_i^{(t+1)} = w v_i^{(t)} + c_1 R_1^{(t+1)} (p_{\text{best}, i}^{(t)} x_i^{(t)}) + c_2 R_2^{(t+1)} (g_{\text{best}}^{(t)} x_i^{(t)})$
- Hyperparameters to choose: w, c_1, c_2
- Particles should not diverge
- "Stability analyses" had been done these are simplified analytical computations,
 for example:
 - Assume one dimensional case,
 - Assume static $p_{\text{best, }i}^{(t)} = p_{\text{best, }i}$ and $g_{\text{best}}^{(t)} = g_{\text{best}}$ ("stagnation assumption")
 - Ignore randomness (replace $R_k^{(t+1)}$ by expected value ½)
- Derive requirements for w, c_1, c_2 such that $x_i^{(t)}$ "converges"

PSO - choice of hyperparameters

• Velocity of particle i at iteration t+1:

•
$$v_i^{(t+1)} = w v_i^{(t)} + c_1 R_1^{(t+1)} (p_{\text{best}, i}^{(t)} - x_i^{(t)}) + c_2 R_2^{(t+1)} (g_{\text{best}}^{(t)} - x_i^{(t)})$$

- Standard choice in SPSO 2007, based originally on stability analyses from Clerc and Kennedy (2002):
 - $w = \frac{1}{2 \ln(2)} = 0.721$,
 - $c_1 = c_2 = \frac{1}{2} + \ln(2) = 1.193$
- Since deterministic $R_k^{(t+1)} = \frac{1}{2}$ and static p_{best} , g_{best} are used in stability analyses, no distinctive requirements for c_1 and c_2 are obtained and a default is often just $c_1 = c_2$
- Write now $C_k^{(t+1)} = c_k R_k^{(t+1)} \sim Unif[0, c_k], k = 1, 2.$

• Movement of specific particle at iteration t+1 (drop index i):

•
$$x^{(t+1)} = x^{(t)} + v^{(t+1)}$$

•
$$v^{(t+1)} = wv^{(t)} + C_1^{(t+1)} (p_{\text{best}}^{(t)} - x^{(t)}) + C_2^{(t+1)} (g_{\text{best}}^{(t)} - x^{(t)})$$

• Focusing on particle locations, we can describe PSO as:

$$x^{(t+1)} = x^{(t)} + v^{(t+1)}$$

$$= x^{(t)} + wv^{(t)} + C_1^{(t+1)} \left(p_{\text{best}}^{(t)} - x^{(t)} \right) + C_2^{(t+1)} \left(g_{\text{best}}^{(t)} - x^{(t)} \right)$$

$$= x^{(t)} + w \left(x^{(t)} - x^{(t-1)} \right) + C_1^{(t+1)} \left(p_{\text{best}}^{(t)} - x^{(t)} \right) + C_2^{(t+1)} \left(g_{\text{best}}^{(t)} - x^{(t)} \right)$$

$$= x^{(t)} \left(1 + w - C_1^{(t+1)} - C_2^{(t+1)} \right) - wx^{(t-1)} + C_1^{(t+1)} p_{\text{best}}^{(t)} + C_2^{(t+1)} g_{\text{best}}^{(t)}$$

• Therefore, a single equation is sufficient to describe the PSO iterations $(x^{(t+1)}$ depends then on both $x^{(t)}$ and $x^{(t-1)}$)

• Movement of specific particle at iteration t+1 with PSO:

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} \left(1 + w - C_1^{(t+1)} - C_2^{(t+1)} \right) - w \boldsymbol{x}^{(t-1)} + C_1^{(t+1)} \boldsymbol{p}_{\text{best}}^{(t)} + C_2^{(t+1)} \boldsymbol{g}_{\text{best}}^{(t)}$$

- Stability analyses were improved during the two previous decades, see <u>Bonyadi and Michalewicz (2016)</u> and Cleghorn and Engelbrecht (2018); definitions below follow the latter
- Order-1 stability A sequence $(x^{(t)})$ of p-dimensional random variables is called *order-1 stable* if $\mathbb{E}[x^{(t)}] \to x_E$ for some x_E
- Order-2 stability A sequence $(x^{(t)})$ of p-dimensional random variables is called *order-2 stable* if $Var[x^{(t)}] \rightarrow x_V$ for some x_V

• Movement of specific particle at iteration t+1 with PSO:

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} \left(1 + w - C_1^{(t+1)} - C_2^{(t+1)} \right) - w \boldsymbol{x}^{(t-1)} + C_1^{(t+1)} \boldsymbol{p}_{\text{best}}^{(t)} + C_2^{(t+1)} \boldsymbol{g}_{\text{best}}^{(t)}$$

- Bonyadi and Michalewicz (2016) interpret each of $C_1^{(t+1)}$, $C_2^{(t+1)}$, $p_{\text{best}}^{(t)}$, $q_{\text{best}}^{(t)}$ as iid random variables
- This generalises assumptions that these values are fixed values; it weakens the stagnation assumption
- The iid assumption for $p_{\text{best}}^{(t)}$, t=1,... and for $g_{\text{best}}^{(t)}$, t=1,... still need to be seen as approximations

- We consider the one-dimensional case (p=1) now
- Movement of specific particle at iteration t+1 with PSO: $x^{(t+1)} = x^{(t)} \left(1 + w C_1^{(t+1)} C_2^{(t+1)} \right) wx^{(t-1)} + C_1^{(t+1)} p_{\text{best}}^{(t)} + C_2^{(t+1)} g_{\text{best}}^{(t)}$
- To write the iterations as a linear one-step relation, we write $\mathbf{z}^{(t+1)} = (x^{(t+1)}, x^{(t)})^T, \quad U = 1 + w C_1^{(t+1)} C_2^{(t+1)},$ and $\mathbf{z}^{(t+1)} = \begin{pmatrix} U & -w \\ 1 & 0 \end{pmatrix} \mathbf{z}^{(t)} + \begin{pmatrix} C_1^{(t+1)} p_{\text{best}}^{(t)} + C_2^{(t+1)} g_{\text{best}}^{(t)} \\ 0 \end{pmatrix}$
- Since U and $\mathbf{z}^{(t)}$ are independent, we have

$$E\mathbf{z}^{(t+1)} = \begin{pmatrix} EU & -w \\ 1 & 0 \end{pmatrix} E\mathbf{z}^{(t)} + \begin{pmatrix} E\left[C_1^{(t+1)}p_{\text{best}}^{(t)}\right] + E\left[C_2^{(t+1)}g_{\text{best}}^{(t)}\right] \\ 0 \end{pmatrix}$$

> Sequence $E\mathbf{z}^{(t+1)}$ is of form $E\mathbf{z}^{(t+1)} = \mathbf{M}E\mathbf{z}^{(t)} + \mathbf{b}$

- Sequence $E\mathbf{z}^{(t+1)}$ is of form $E\mathbf{z}^{(t+1)} = \mathbf{M}E\mathbf{z}^{(t)} + \mathbf{b}$
- Functional analysis says that $E\mathbf{z}^{(t)}$ converges if the spectral radius of M is <1, see Bonyadi and Michalewicz (2016)'s Lemma 1
- Spectral radius $\rho(M)$ of $M \in \mathbb{R}^{p \times p}$ is $\rho(M) = \max\{|\lambda_1|, ..., |\lambda_n|\}$ where λ_i are the p (real or complex) eigenvalues of **M**
- Recall that a non-symmetric $\mathbb{R}^{p \times p}$ matrix still has p eigenvalues as long as we allow for complex eigenvalues
- If $\lambda = r + ci$ then $|\lambda| = \sqrt{r^2 + c^2}$; R can cope with this easily:

```
• > M <- matrix(c(-0.66, 1, -0.72, 0), ncol=2)
  > eigen (M) $values
  [1] -0.33+0.7817289i -0.33-0.7817289i
  > max(abs(eigen(M)$values)) # spectral radius
  [1] 0.8485281
```


We have

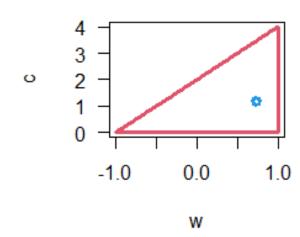
$$E\mathbf{z}^{(t+1)} = \begin{pmatrix} EU & -w \\ 1 & 0 \end{pmatrix} E\mathbf{z}^{(t)} + \begin{pmatrix} E\left[C_1^{(t+1)}p_{\text{best}}^{(t)}\right] + E\left[C_2^{(t+1)}g_{\text{best}}^{(t)}\right] \\ 0 \end{pmatrix}$$

- Compute spectral radius of $\begin{pmatrix} EU & -w \\ 1 & 0 \end{pmatrix}$
- Eigenvalues: $0 = \det \begin{pmatrix} \lambda EU & w \\ -1 & \lambda \end{pmatrix} = \lambda^2 \lambda EU + w \implies \lambda_{1,2} = \frac{EU \pm \sqrt{EU^2 4w}}{2}$
- $EU = 1 + w EC_1^{(t+1)} EC_2^{(t+1)} = 1 + w \frac{c_1 + c_2}{2}$
- One can show:

$$\rho(M) = \max\left\{\frac{|EU + \sqrt{EU^2 - 4w}|}{2}, \frac{|EU - \sqrt{EU^2 - 4w}|}{2}\right\} < 1 \text{ iff}$$

$$-1 < w < 1 \text{ and } 0 < \frac{c_1 + c_2}{2} < 2(w + 1)$$

• Assume $c = c_1 = c_2$

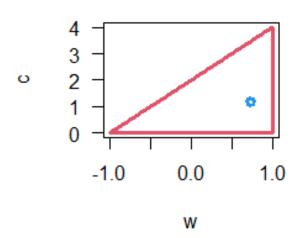


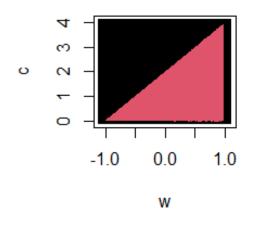
- Assume $c = c_1 = c_2$. EU = 1 + w c
- One can show:

$$\rho(M) = \max\left\{\frac{|EU + \sqrt{EU^2 - 4w}|}{2}, \frac{|EU - \sqrt{EU^2 - 4w}|}{2}\right\} < 1 \text{ iff}$$

$$-1 < w < 1 \text{ and } 0 < c < 2(w+1)$$

• If it would be too difficult to show the above, one could calculate the maximum eigenvalue for a grid of (w, c)-pairs and plot the cases when it is <1 (see R code on homepage)





• To do stability analyses for order-2 stability (about the limit of the variance $Var(z^{(t+1)})$, we can investigate

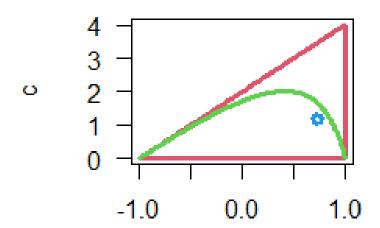
$$\mathbf{z}^{(t+1)} = (x^{(t+1)}, x^{(t)}, (x^{(t+1)})^2, (x^{(t)})^2, x^{(t+1)}x^{(t)})^T$$

• The iterations can be written as system

$$E\mathbf{z}^{(t+1)} = \begin{pmatrix} EU & -w & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0\\ 2E[UP] & -2wEP & E[U^2] & w^2 & -2wEU\\ 0 & 0 & 1 & 0 & 0\\ EP & 0 & EU & 0 & -w \end{pmatrix} E\mathbf{z}^{(t)} + \mathbf{b}$$

where
$$P = C_1^{(t+1)} p_{\text{best}}^{(t)} + C_2^{(t+1)} g_{\text{best}}^{(t)}$$

- $c = c_1 = c_2$
- -1 < w < 1 and 0 < c < 2(w+1)
- Sequence $(\mathbf{z}^{(t+1)})$ is order-2 stable if: -1 < w < 1 and



$$0 < c < \frac{12(w^2 - 1)}{5w - 7}$$

• Default in R-package pso based on Clerc and Kennedy (2002):

$$w = \frac{1}{2\ln(2)} = 0.721, c = c_1 = c_2 = \frac{1}{2} + \ln(2) = 1.193$$

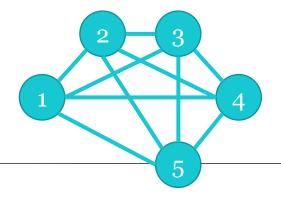
PSO - choice of hyperparameters

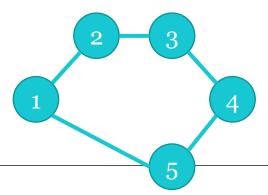
- Based on stability analysis, choose w, c_1 , c_2 respecting -1 < w < 1 and $0 < c_1 + c_2 < \frac{24(w^2 1)}{5w 7}$
- w>o is in spirit of the algorithm's idea
- Another hyperparameter to be chosen: swarm size
- Swarm size motivated by empirical studies based on standard optimisation problems
- SPSO 2007: $10 + [2\sqrt{p}]$
- Clerc (2012) shows with 12 standard optimisation problems:
 - usually swarm sizes larger than $10 + \left[2\sqrt{p}\right]$ better,
 - dependence on dimension p is weak
- SPSO 2011: choice of user; suggested: 40

PSO - topologies for particles

- Particles "inform" other particles about their results
- In the original PSO, each particle informs all others
- To ensure that not all particles are attracted prematurely by particle at a local optimum, do not inform all particles
- The structure how information flows is specified in "topologies"
- Global top. (all inform all)

Ring top. (all inform their two "neighbours")

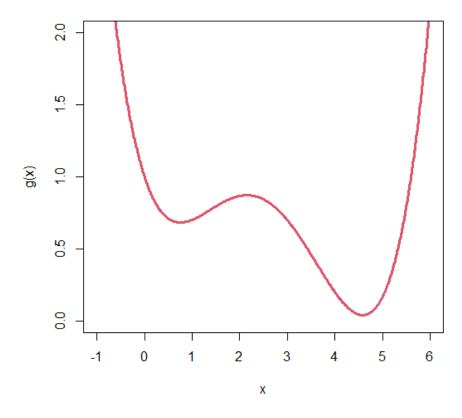




PSO – exploration versus exploitation

- Exploration of the search space
- Exploitation around a promising position
- The topology: A sparce topology (e.g. ring top.) ensures more exploration compared to a dense one (e.g. global top.)
- Parameter w: Larger w leads to more exploration
- Parameters c_1 and c_2 : Smaller c_2 (and c_1) lead to more exploration
- Clerc (2016; Section 8.6.4.1): The experimental evidence for such dependencies [on w, c_1 , c_2] is weak

Simulated annealing



AlphaOpt (2017). Introduction To Optimization: Gradient Free Algorithms (2/2) – Simulated Annealing, Nelder-Mead (0:15-1:35)

Simulated annealing

- Start value $x^{(0)}$; Stage j=0,1,2,... has m_j iterations; set j=0
- Given iteration $x^{(t)}$, generate $x^{(t+1)}$ as follows:
- 1. Sample a candidate x^* from a proposal distribution $p(\cdot|x^{(t)})$
- 2. Compute $h(x^{(t)}, x^*) = \exp(\frac{g(x^*) g(x^{(t)})}{\tau_j})$ $g(x^{(t)}) g(x^*)$ for minimisation
- 3. Define next iteration $x^{(t+1)}$ according to

$$x^{(t+1)} = \begin{cases} x^*, & \text{with probability min}\{h(x^{(t)}, x^*), 1\} \\ x^{(t)}, & \text{otherwise} \end{cases}$$

- 4. Set t < -t+1 and repeat 1.-3. m_j times
- 5. Update $\tau_j = \alpha(\tau_{j-1})$ and $m_j = \beta(m_{j-1})$; set **j** <- **j+1**; go to 1
- τ_j is temperature; function α should slowly decrease it; function β should be increasing

Simulated annealing

- Initially, also "bad" proposals are accepted
- With decreasing temperature, accept only improvements
- This helps to explore first and avoids convergence to a local maximum too early
- Algorithm which has therefore chances to find the global optimum in presence of multiple local optima
- method="SANN" of R function optim is "a variant of simulated annealing" (documentation of optim)
 - Initial temperature seems to be important choice (can be changed e.g. by control=list(temp=0.01); default 10 might be bad)

Simulated annealing: proposal distribution

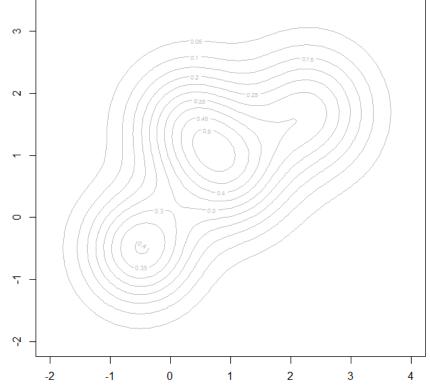
- Step 1 in simulated annealing iteration rule:
- Sample a candidate x^* from a proposal distribution $p(\cdot|x^{(t)})$
- Proposal distribution could be uniform distribution on a **neighbourhood** of $x^{(t)}$; for a unidimensional optimisation problem:

```
xs <- xt + runif(n=1, min=-1, max=1)
```

- Instead of Unif[-1,1], a distribution on a smaller or larger neighbourhood could be used
- But also, normal distribution $N(0, \sigma^2)$ or other **symmetric** distribution around o might be added to $x^{(t)}$ instead
- For multidimensional cases, one could use iid components, a uniform distribution on a ball around $\mathbf{x}^{(t)}$ or a multivariate normal distribution with mean $\mathbf{x}^{(t)}$

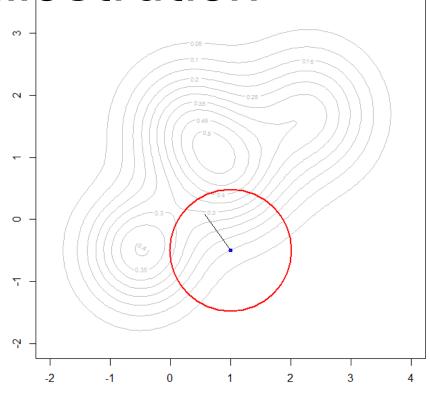
Simulated annealing - Illustration

- For illustration, we consider two-dimensional function g according to contour lines in figure (one global and one local maximum) and fixed temperature τ
- Proposal distribution $p(\mathbf{x}^*|\mathbf{x}^{(t)}) = p(\mathbf{x}^{(t)}|\mathbf{x}^*)$ $= \frac{1}{\pi r^2} \mathbf{1} \{ \|\mathbf{x}^{(t)} \mathbf{x}^*\| < r \}$ for some constant r (here=1)



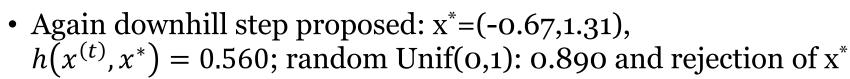
Simulated annealing - Illustration

- Proposal distribution $p(\mathbf{x}^*|\mathbf{x}^{(t)}) = p(\mathbf{x}^{(t)}|\mathbf{x}^*)$ $= \frac{1}{\pi r^2} \mathbf{1} \{ \|\mathbf{x}^{(t)} \mathbf{x}^*\| < r \}$ for some constant r (here=1)
- Start here with $x^{(0)} = (1, -0.5)$
- Randomize uniformly on unit circle around $x^{(o)}$ (proposal distribution); result $x^*=(0.58,0.08)$
- $g(x^*)=0.296 > g(x^{(0)}) = 0.098$; so this was an uphill step and is automatically accepted $(h(x^{(t)}, x^*) > 1)$

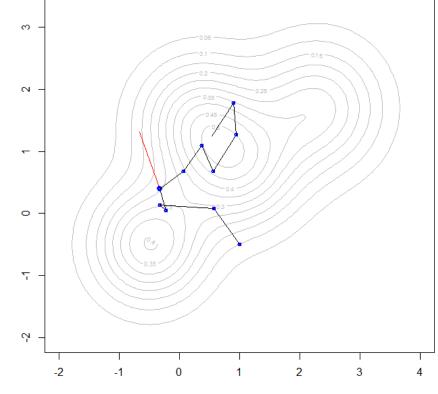


Simulated annealing - Illustration

- $X^{(0)}=(1,-0.5)$
- Uphill steps: $x^{(1)} = (0.58, 0.08)$
- $x^{(2)} = (-0.33, 0.13)$
- $x^{(3)} = (-0.23, 0.05)$
- Then downhill step proposed: $x^* = (-0.32, 0.4), h(x^{(t)}, x^*) = 0.774$
- Random Unif(0,1) generated: 0.573 and since this is smaller than h=0.774, $x^{(4)}$ = x^* =(-0.32,0.4) is accepted



• $x^{(5)}=x^{(4)}=(-0.32,0.4)$



Combinatorial optimisation

- Generic optimisation problem:
 - x p-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \min g(x)$
- Now, we consider also optimisation problems which cannot exactly be formulated according to the generic one
- Especially, function g might be defined on another space than \mathbb{R}^p
- Generalized optimisation problem:
 - x p-dimensional vector, $g: \mathbb{S} \to \mathbb{R}$ function for some set \mathbb{S}
 - We search x^* with $g(x^*) = \min g(x)$

Example: Multiple linear regression

- Generalized optimisation problem:
 - x p-dimensional vector, $g: \mathbb{S} \to \mathbb{R}$ function for some set \mathbb{S}
 - We search x^* with $g(x^*) = \min g(x)$
- Multiple linear regression with q predictors
- Desired to choose best model based on criterion like AIC
- There are 2^q possible models
- If *q* small, AIC of all models can be computed (exhaustive search); for *q* larger, this is impossible (e.g. *q*=50, 1*ms* to compute an AIC → more than 35 000 years needed!)
- One model can be represented as element of $\mathbb{S} = \{0, 1\}^q$ (1=predictor included in model, 0 otherwise)

Example: Multiple linear regression

- Generalized optimisation problem:
 - x p-dimensional vector, $g: \mathbb{S} \to \mathbb{R}$ function for some set \mathbb{S}
 - We search x^* with $g(x^*) = \min g(x)$
- Optimisation problem: Which model gives best AIC?
- Model 1: (1, 0, 0, 0, 1, 1, 0, 1, ...)
 Model 2: (1, 1, 1, 0, 1, 1, 0, 0, ...)
- Which models are "close" to each other? (Need metric on $\mathbb{S} = \{0, 1\}^q$) What is a neighbourhood of a model?
- Apply simulated annealing e.g. with neighbourhood being all models which differ by one predictor (for proposal dist.)
- Uniform distribution on neighbourhood can be used

Example: Multiple linear regression

- Generalized optimisation problem:
 - x p-dimensional vector, $g: \mathbb{S} \to \mathbb{R}$ function for some set \mathbb{S}
 - We search x^* with $g(x^*) = \min g(x)$
- Arbitrary starting model generated (e.g. uniform distribution on $\mathbb{S} = \{0, 1\}^q$, xs <- rbinom(q, size=1, prob=0.5))</pre>

• See example in Givens and Hoeting (2013), Section 3.3, with 27 predictors

Recall from L1: Maximising information of experimental designs

- Regression model $y=X \beta + \varepsilon$ (where ε has iid components)
- X design matrix (depends on choice of observational points)
- Covariance matrix of Least Squares estimate $\widehat{\beta}$ is $Cov(\widehat{\beta}) = (X^TX)^{-1} \cdot const$
- Choose design of an experiment such that X^TX "large"
- D-optimality: $g("design") = det(X^TX)$
- We search design* with $g(design^*) = \max g(design)$

Ex: Maximising information of experimental designs

- Regression model $y=X \beta + \varepsilon$, $Cov(\widehat{\beta}) = (X^T X)^{-1} \cdot const$
- We search design* with $g(design^*) = \max g(design)$
- Example: cubic regression, $y = \beta_0 + \beta_1 w + \beta_2 w^2 + \beta_3 w^3 + \varepsilon$, w can be chosen in [-1, 1], but practical circumstances require here a distance between design points of 0.05
- Therefore, we allow design points {-1, -0.95, -0.9, ..., 1} and at most one observation can be done at each point
- Each observation has a cost; and we want to minimise the penalized D-optimality #observations * $0.2 \log(\det(X^TX))$

$$X = \begin{pmatrix} 1 & w_1 & w_1^2 & w_1^3 \\ 1 & w_2 & w_2^2 & w_2^3 \\ \dots & \dots & \dots \\ 1 & w_n & w_n^2 & w_n^3 \end{pmatrix}$$

Ex: Maximising information of experimental designs

- Example: cubic regression, $y = \beta_0 + \beta_1 w + \beta_2 w^2 + \beta_3 w^3 + \varepsilon$, w can be chosen in [-1, 1], but practical circumstances require here a distance between design points of 0.05
- Therefore, we allow design points {-1, -0.95, -0.9, ..., 1} and at most one observation can be done at each point
- A design can be represented by a vector in $S = \{0, 1\}^{41}$ where o means that no observation is done at a design point and 1 means that one observation is made there
- How can a reasonable neighbourhood on S look like here?

Simulated annealing

- Start value $x^{(0)}$; Stage j=0,1,2,... has m_j iterations; set j=0
- Given iteration $x^{(t)}$, generate $x^{(t+1)}$ as follows:
- 1. Sample a candidate x^* from a proposal distribution $p(\cdot|x^{(t)})$
- 2. Compute $h(x^{(t)}, x^*) = \exp(\frac{g(x^*) g(x^{(t)})}{\tau_j})$ $g(x^{(t)}) g(x^*)$ for minimisation
- 3. Define next iteration $x^{(t+1)}$ according to

$$x^{(t+1)} = \begin{cases} x^*, & \text{with probability min} \{h(x^{(t)}, x^*), 1\} \\ x^{(t)}, & \text{otherwise} \end{cases}$$

- 4. Set t < -t+1 and repeat 1.-3. m_j times
- 5. Update $\tau_j = \alpha(\tau_{j-1})$ and $m_j = \beta(m_{j-1})$; set **j** <- **j+1**; go to 1
- τ_j is temperature; function α should slowly decrease it; function β should be increasing

Markov Chain Monte Carlo - Metropolis algorithm

(Metropolis et al., 1953)

- Given a density f(x) and aim is to generate a sample following f
- A starting value x^(o) is generated from some starting distribution
- Given observation $x^{(t)}$, generate $x^{(t+1)}$ as follows:
- 1. Sample candidate x^* from symmetric proposal dist. $p(\cdot|x^{(t)})$

symmetric proposal:

$$p(x^{(t)}|x^*) = p(x^*|x^{(t)})$$

- 2. Compute ratio $R(x^{(t)}, x^*) = \frac{f(x^*)}{f(x^{(t)})}$
- 3. Sample $x^{(t+1)}$ according to

$$x^{(t+1)} = \begin{cases} x^*, & \text{with probability min} \{R(x^{(t)}, x^*), 1\} \\ x^{(t)}, & \text{otherwise} \end{cases}$$

4. If more observations needed, set t <- t+1; go to 1

Simulated annealing and Metropolis algorithm

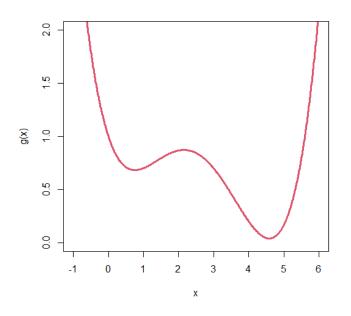
- For fixed temperature τ , simulated annealing algorithm is a Metropolis algorithm
- Kirkpatrick et al. (1983) proposed name simulated annealing for using it as optimisation method

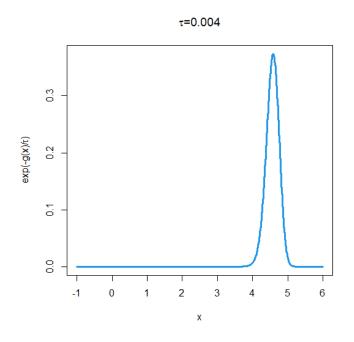
•
$$h(x^{(t)}, x^*) = \exp\left(\frac{g(x^{(t)}) - g(x^*)}{\tau_j}\right) = \frac{\exp\left(-\frac{g(x^*)}{\tau_j}\right)}{\exp\left(-\frac{g(x^{(t)})}{\tau_j}\right)} = \frac{f(x^*)}{f(x^{(t)})} = R(x^{(t)}, x^*)$$

- Key ingredient of Metropolis and simulated annealing alg.: Markov chain $x^{(t)}$ has limiting stationary distribution f; for a proof see e.g. Koski (2009)
- Requirement for all: $x^{(t)}$ irreducible and aperiodic chain

Simulated annealing: stationary distribution for fixed temperature τ

• Fixed temperature τ : Markov chain $x^{(t)}$ has limiting stationary distribution with density proportional to $f(x) = \exp\left(-\frac{g(x)}{\tau}\right)$





Convergence of simulated annealing

- Convergence proofs see generated sequence either as sequence of homogeneous Markov chains (one for each τ) or as one inhomogeneous Markov chain
- For discrete $S = \{x_1, x_2, x_3, ...\}$ and g having a finite set M of global minima, simulated annealing converges with probability 1/|M| to each of the M global minima (references for proofs in Givens and Hoeting, 2013); main idea:
- Stationary distribution proportional to: $\exp\left(-\frac{g(x)}{\tau}\right)$ or to $\exp\left(-\frac{g(x)-g_{min}}{\tau}\right)$ with $g_{min}=\min\{g(x)\}$
- Therefore, if P is distribution according to stationary distribution,

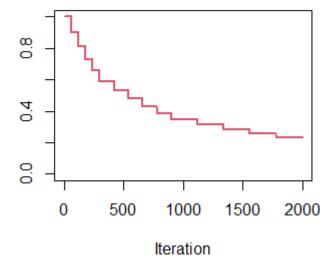
$$P(x_{i}) = \exp\left(-\frac{g(x_{i}) - g_{min}}{\tau}\right) / \{|M| + \sum_{x_{j} \notin M} \exp\left(-\frac{g(x_{j}) - g_{min}}{\tau}\right)\} \rightarrow \frac{1}{|M|} (x_{i} \in M)$$

$$\rightarrow 0 \text{ for } x_{i} \notin M,$$

$$\rightarrow 1 \text{ for } x_{i} \in M$$

Convergence of simulated annealing

- To achieve convergence to a global minimum (possibly in presence of local minima) in practise, one needs:
 - Run iterations for each fixed temperature long enough such that convergence to stationary distribution achieved
 - Cool temperature slowly enough such that iterations have time to escape from local minima
- Example from Givens and Hoeting (2013; p.73):
 - 5 stages with 60 iterations, then
 - 5 stages with 120 iterations, then
 - 5 stages with 220 iterations
 - From one stage to the next, τ is decreased by 10%, tau <- 0.9*tau; final τ is $0.9^{15} = 0.206*initial <math>\tau$



Simulated annealing: + and -

- +Very easy to implement
- +Theoretical property is good: theoretically, we can guarantee convergence to a global optimum even in the presence of local optima
- +Can even handle some non-standard optimisation problems
- In practice, convergence can be "maddeningly slow"
- -One needs to play around with cooling schedule to ensure convergence in practice
 - We need to run the algorithm "long enough" at each temperature (to ensure stationary distribution)
 - We need to cool the temperature slowly enough (to allow escaping from local optima)

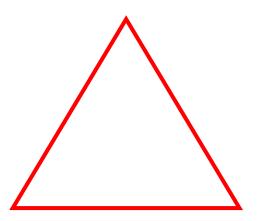
Comparisons of algorithms or hyperparameter choices based on empirical studies

- We have several options for optimisation algorithms
- Or within one algorithm we can choose some hyperparameters
- A possibility is to compare the options by running them on an example problem. Better, one might want to compare options for a set of easy and difficult optimisation problems
- For comparability, often "standard optimisation problems" used; see e.g. <u>Liang et al. (2013)</u>
- Can be mathematical functions or statistical optimisation problems

Comparisons of algorithms or hyperparameter choices based on empirical studies

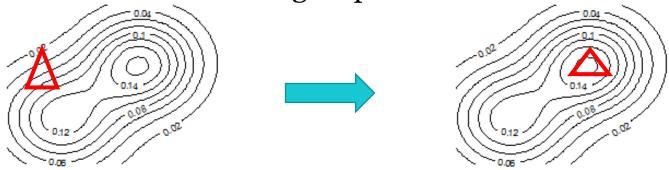
- After choosing some standard optimisation problems, one needs to define a success criterion (example in Clerk, 2016)
- Possibility: count runs of algorithm leading to a solution x_s with $g(x_s) < g(x^*) + \delta$; here x^* true position of global minimum, and δ small (ideally $\delta < g(x_L) g(x^*)$ for any local minimum x_L)
- If true success rate for an algorithm is p, we observe a Bin(1, p)-random variable in each run
- Success rate has sd $\sqrt{\frac{p(1-p)}{n}}$ when doing n runs and you can do informed choice of n
- E.g. p = 0.8, $n = 100 \rightarrow \text{sd} = 0.04$.

Nelder-Mead algorithm



- x p-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
- We search x^* with $g(x^*) = \max g(x)$
- Nelder-Mead method is heuristic method for *p*-dimensional optimisation problem (default in **R**-function **optim**)
- Positive:
 - +No computation of derivatives necessary
- Negative:
 - No theoretical guarantee for converge (counter examples exist)
 - Might be slow
- Works often well, especially if *p* not too large

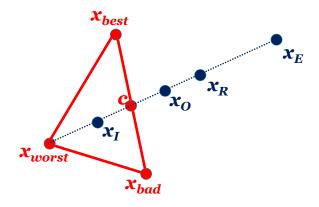
- Idea: Work with simplex of p+1 points; i.e. for two-dimensional optimisation: work with triangle
- Aim that triangle includes maximum
- Choose arbitrary starting triangle
- Change vertices to "move the triangle upwards"



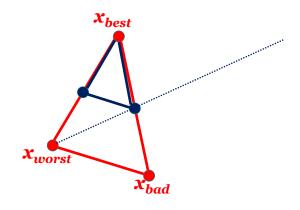
- Two animations:
 - https://www.youtube.com/watch?v=HUqLxHfxWqU
 - https://www.youtube.com/watch?v=KEGSLQ6TlBM

- Identify worst vertex \mathbf{x}_{worst} ($g(\mathbf{x}_{worst})$ minimal among all vertices) and compute average \mathbf{c} of remaining vertices
- Let x_{best} be best and x_{bad} be second worst vertex
- Rules for
 - Reflection
 - Expansion
 - Outer contraction
 - Inner contraction
 - Shrinkage

• Replace $\mathbf{x_{worst}}$ with one of $\mathbf{x_I}$, $\mathbf{x_O}$, $\mathbf{x_R}$, $\mathbf{x_E}$ (rule depends on values for $g(\mathbf{x_{worst}})$, $g(\mathbf{x_{bad}})$, $g(\mathbf{x_{best}})$, $g(\mathbf{x_I})$, $g(\mathbf{x_O})$, $g(\mathbf{x_R})$, $g(\mathbf{x_E})$; see Givens and Hoeting, page 47-48) and create new simplex/triangle



• Or in specific cases: Shrink (keep x_{best} and move all other vertices towards it)



- Nelder-Mead algorithm is quite old, but still popular
- Research is ongoing e.g. about convergence results and variants of Nelder-Mead
- Note that Nelder-Mead can be used for dimension p=1 as well
- However, there exist better gradient free algorithms for p=1
 - R-function optimize uses gradient free algorithm with convergence order q=1.324 (some requirements to function g necessary)

Solution *x* of
$$0 = x^3 - x - 1$$
; (Brent, 1973)

References

- Brent, 1973. Algorithms for minimization without derivatives. Englewood Cliffs N.J.: Prentice-Hall.
- Bonyadi MR, Michalewicz Z (2016). <u>Stability analysis of the particle swarm optimization without stagnation assumption</u>. *IEEE transactions on evolutionary computation*, 20(5):814-819.
- Cleghorn CW, Engelbrecht AP (2018). Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. *Swarm Intelligence*, 12(1):1-22. An author version is available here.
- Clerc M (2012). Standard particle swarm optimization. Preprint, HAL open science.
- Clerc M (2016). Chapter 8: Particle swarms. In: Metaheuristics. (Siarry P ed.).
- Clerc M, Kennedy J (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. *IEEE transactions on Evolutionary Computation*, 6(1), 58-73.
- Givens GH, Hoeting JA (2013). *Computational Statistics*, 2nd edition. John Wiley & Sons, Inc., Hoboken, New Jersey.
- Kennedy J, Eberhart R (1995). Particle swarm optimization. In *Proceedings of ICNN'95-international conference on neural networks* (Vol. 4, pp. 1942-1948). IEEE.
- Kirkpatrick S, Gelatt CD, Vecchi MP (1983). Optimization by Simulated Annealing. *Science*, 220(4598):671–680.
- Koski T (2009). *Sf2955 Computer intensive methods MCMC On the Discrete Metropolis-Hastings Algorithm*. KTH, Stockholm. https://www.math.kth.se/matstat/gru/sf2955/metropolis3.pdf
- Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2013). <u>Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization.</u> Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 635(2).
- Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953). Equation of state calculations by fast computing machines. *Journal of Chemical Physics*, 21, 1087–1092.

