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• Topic 1: Gradient based optimisation

• Topic 2: Stochastic gradient based optimisation

• Topic 3: Gradient free optimisation

• Topic 4: Optimisation with constraints

• Topic 5: EM algorithm and bootstrap

• Topic 6: Simulation of random variables

• Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

Includes schedule, reading material, lecture notes, assignments
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• EM = “Expectation-Maximization”

• Main application of this algorithm is in situations where not all data is 
observed

• E: Expectation will be taken over all (unobserved) data which lead to the 
observed data

• Algorithm is iterative: 
each iteration has an E step, followed by an M step
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• Classical example: Genotype–phenotype 

• Peppered moths (see Ex.4.2 in GH, “björkmätare”)

• Alleles: C, I, T; genotypes: CC,CI,CT;  II,IT;       TT

• Observed only phenotype: carbonaria; insularia; typica  
Frequency observed:       𝑛𝐶;             𝑛𝐼;           𝑛𝑇

• Aim: estimate allele frequencies 𝑝𝐶, 𝑝𝐼, 𝑝𝑇 based on observed phenotype frequencies 
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Source: Wikipedia; Pictures of moths taken by Olaf Leillinger. Licence: CC BB-SA 3.0

Typica

Carbonaria

https://en.wikipedia.org/wiki/Peppered_moth
https://creativecommons.org/licenses/by-sa/3.0/deed.en


• Observed data: 𝑿 = (𝑁𝐶 , 𝑁𝐼 , 𝑁𝑇)

• Complete data: 𝒀 = (𝑁𝐶𝐶 , 𝑁𝐶𝐼 , 𝑁𝐶𝑇 , 𝑁𝐼𝐼 , 𝑁𝐼𝑇 , 𝑁𝑇𝑇)

• Aim: estimate 𝒑 = (𝑝𝐶, 𝑝𝐼, 𝑝𝑇)

• We can specify

• the expectations 𝐸[𝒀|𝑿, 𝒑] and

• the complete data likelihood 𝑓𝒀(𝒚|𝒑)
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• According to biological theory: 
𝑃(a random moth is CC) = (𝑝𝐶)2

𝑃 a random moth is CI = 2𝑝𝐶 𝑝𝐼

⋯

• The complete data likelihood 𝑓𝒀(𝒚|𝒑) is multinomial:

𝑓𝒀 𝒚 𝒑 = 𝑝𝐶
2 𝑁𝐶𝐶 ∗ 2𝑝𝐶𝑝𝐼

𝑁𝐶𝐼 ∗ ⋯ ∗
𝑁

𝑁𝐶𝐶 𝑁𝐶𝐼 …

• Complete data log likelihood: 
log 𝑓𝒀 𝒚 𝒑 = 𝑁𝐶𝐶 ∗ log 𝑝𝐶

2 + 𝑁𝐶𝐼 ∗ log 2𝑝𝐶𝑝𝐼 + ⋯

• Expectations 𝐸[𝒀|𝑿, 𝒑] are for example:

𝐸 𝑁𝐶𝐶 𝑁𝐶 , 𝑁𝐼 , 𝑁𝑇 , 𝒑 = 𝑁𝐶

𝑝𝐶
2

𝑝𝐶
2 + 2𝑝𝐶𝑝𝐼 + 2𝑝𝐶𝑝𝑇
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• Let 𝑿 be observed data, 𝒀 complete data, 𝜽 unknown parameter-vector, 
𝐿(𝜽|𝒙) likelihood to be maximized

• Iteration 𝑡 (𝑡 = 0,1, …): 𝜽 𝒕

• Let 𝑄 𝜽 𝒙; 𝜽 𝑡 = 𝐸 log 𝐿 𝜽 𝑌 |𝒙; 𝜽 𝑡 be expectation of log likelihood 
for complete data conditional on observed data 𝑿 = 𝒙

• EM algorithm:

1. Initialize parameter-vector with a guess 𝜽 0 , 𝑡 = 0

2. E step: Compute 𝑄 𝜽 𝒙; 𝜽 𝑡

3. M step: Maximize 𝑄 𝜽 𝒙; 𝜽 𝑡 with respect to 𝜽 -> result is 𝜽 𝑡+1

4. If not stopping criterion (e.g. 𝜽 𝑡+1 − 𝜽 𝑡 𝑇
𝜽 𝑡+1 − 𝜽 𝑡 < 𝜖) met, 

set t <- t+1, and go back to E step 
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• Effect of a drug to be measured and n patients (randomly chosen out of a 
population of patients) treated with the drug 

• 𝑋𝑖, 𝑖 = 1, … , 𝑛, observed for each patient after drug-treatment

• Known that population consists of two groups: 

• One group responds well to the drug (i.e. larger 𝑋𝑖)

• Another group responds only barely (smaller 𝑋𝑖)

• It is not known which patient belongs to which group
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Observed: 𝑿𝒊,

Unobserved: 𝒁𝒊 = ቊ
𝟏, if patient 𝒊 belongs to responder group
𝟎, otherwise

Complete data: 𝒀𝒊 = (𝑿𝒊, 𝒁𝒊)



• In this example, we assume that 𝑋𝑖  has normal mixture density 𝑓 for 𝑐 = 2
groups (responder, non-responder)

• Generally, a normal mixture (also called GMM, Gaussian mixture model) 
has density 𝑓 being sum of 𝑐 weighted densities:

𝑓 𝑥 = σ𝑖=1
𝑐 𝑝𝑖 𝜑 𝑥; 𝜇𝑖; 𝜎𝑖 ,

where pi are weight or mixing coefficients (𝑝𝑖 ≥ 0; 𝑝1 + ⋯ + 𝑝𝑐 = 1), and 
𝜑(𝑥; 𝜇; 𝜎) being density of 𝑁(𝜇, 𝜎2)

• Here for 𝑐 = 2 groups (𝑝 = 𝑝1,  𝑝2 = 1 − 𝑝): 
𝑓 𝑥 = 𝑝𝜑 𝑥; 𝜇1; 𝜎1 + 1 − 𝑝 𝜑 𝑥; 𝜇2; 𝜎2

• 5 parameters to estimate from data: 𝑝; 𝜇1; 𝜎1; 𝜇2; 𝜎2
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• 𝑓𝑀 𝑥 = 𝑝𝜑(𝑥; 𝜇1; 𝜎1) + 1 − 𝑝 𝜑 𝑥; 𝜇2; 𝜎2

• parameters: 𝑝; 𝜇1; 𝜎1; 𝜇2; 𝜎2

• Example here: 𝑝 = 0.4; 𝜇1 = 0; 𝜎1 = 0.7; 𝜇2 = 2; 𝜎2 = 0.8

2025-04-29Advanced computational statistics L5 11



Lindholm, Wahlström, Lindsten, Schön (2022)

• The estimated probability that observation j belongs to 
group i (of 𝑐 groups) is 

ො𝜋𝑖𝑗 =
Ƹ𝑝𝑖𝜑 𝑥𝑗; ො𝜇𝑖; ො𝜎𝑖

σ𝑘=1
𝑐 Ƹ𝑝𝑘𝜑 𝑥𝑗; ො𝜇𝑘; ො𝜎𝑘

, 

where
𝜑 ∙; 𝜇; 𝜎  is density of normaldist. with mean 𝜇 and sd 𝜎

• Model parameters maximizing 𝑄 are:

• Ƹ𝑝𝑖 =
1

𝑛
σ𝑗=1

𝑛 ො𝜋𝑖𝑗, 

• ො𝜇𝑖 =
1

ො𝑝𝑖𝑛
σ𝑗=1

𝑛 ො𝜋𝑖𝑗 ∙ 𝑥𝑗, 

• ො𝜎𝑖
2 =

1

ො𝑝𝑖𝑛
σ𝑗=1

𝑛 ො𝜋𝑖𝑗 ∙ (𝑥𝑗 − ො𝜇𝑖)2

• 𝑄 = σ𝑖=1
𝑐 σ𝑗=1

𝑛 ො𝜋𝑖𝑗 log Ƹ𝑝𝑖 + log 𝜑 𝑥𝑗; ො𝜇𝑖; ො𝜎𝑖

• See Section (10.1 and) 10.2 of Lindholm, Wahlström, Lindsten, Schön (2022)
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Ƹ𝑝𝑖𝜑 𝑥𝑗; Ƹ𝜇𝑖; ො𝜎𝑖

𝑖
= 1

𝑖 = 2

𝑥𝑗 = 1.5

Multivariate case similar, except:

ෝ𝝁𝑖 =
1

ො𝑝𝑖𝑛
σ𝑗=1

𝑛 ො𝜋𝑖𝑗 ∙ 𝒙𝑗, 

Σ𝑖 =
1

Ƹ𝑝𝑖𝑛


𝑗=1

𝑛

ො𝜋𝑖𝑗 ∙ (𝒙𝑗 −ෝ𝝁𝑖)(𝒙𝑗−ෝ𝝁𝑖)𝑇

E step

M step

http://smlbook.org/book/sml-book-draft-latest.pdf


• Example for illustration: 𝑛 = 9 observations obtained. Ordered data: 
0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0

• EM algorithm terminates after 8 iterations with:

(𝑝1
8

, 𝜇1
(8)

, 𝜇2
(8)

, 𝜎1
(8)

, 𝜎2
(8)

) = (0.444, 0.600, 3.460, 0.361, 0.532)

• Mean, sd, and ො𝜋1𝑗  converge as follows:
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• Example for illustration: 𝑛 = 9 observations obtained. Ordered data: 
0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0

• EM algorithm terminates after 8 iterations with:

(𝑝1
8

, 𝜇1
(8)

, 𝜇2
(8)

, 𝜎1
(8)

, 𝜎2
(8)

) = (0.444, 0.600, 3.460, 0.361, 0.532)

• Over the iterations, 𝑄 converges as follows:
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Q

     -20.69286

     -19.68185

     -17.56861

     -14.35840

     -13.19032

     -12.03445

     -11.71313

     -11.71272
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emalg <- function(dat, eps=0.000001){

  n      <- length(dat)

  pi     <- rep(NA, n)   #initialize vector for prob. to belong to group 1  

  p      <- 0.5          #Starting value for mixing parameter 

  sigma1 <- sd(dat)*2/3  #Starting value for variances

  sigma2 <- sigma1

  mu1    <- mean(dat)-sigma1/2 #Starting values for means

  mu2    <- mean(dat)+sigma1/2

  pv     <- c(p, mu1, mu2, sigma1, sigma2)  #parameter vector

  cc     <- eps + 100    #initialize conv. crit. not to stop directly 

  while (cc>eps){

    pv1  <- pv           #Save previous parameter vector

    ### E step ###

    for (j in 1:n){

      pi1   <- p*dnorm(dat[j], mean=mu1, sd=sigma1)

      pi2   <- (1-p)*dnorm(dat[j], mean=mu2, sd=sigma2)

      pi[j] <- pi1/(pi1+pi2)

    }

    ### M step ###

    p      <- mean(pi)

    mu1    <- sum(pi*dat)/(p*n)

    mu2    <- sum((1-pi)*dat)/((1-p)*n)

    sigma1 <- sqrt(sum(pi*(dat-mu1)*(dat-mu1)/(p*n)))

    sigma2 <- sqrt(sum((1-pi)*(dat-mu2)*(dat-mu2)/((1-p)*n)))

    ######

    pv     <- c(p, mu1, mu2, sigma1, sigma2)

    cc     <- t(pv-pv1)%*%(pv-pv1)

  }

  pv

}

data <- c(0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0)

emalg(data)
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● We want to create automatically starting values 
which are meaningful for the data

● My heuristic rule to choose them in the R-code 
before:

– Take total data and compute overall mean and sd

– Overall sd is usually larger than sd’s for groups

– Therefore, I took 2/3* overall sd for the sd in 
both groups

– For group means, starting values with 1 sd
difference chosen

mean sd
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● We consider now an unsupervised learning situation with multivariate 
data coming from c groups, but it is unknown from which group each 
observation comes from (i.e., we have unlabeled data)

● Task: estimate to which group the observations belong to (i.e., 
classification)



𝑘
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● Initialize with 𝑘 means

𝝁1
(0)

, ⋯ , 𝝁𝑘
(0)

● Assignment step:

Each observation is assigned to the 

nearest mean 𝝁𝑖
(𝑡)

● Update step:

For each group 𝑖 calculate the new mean 

𝝁𝑖
(𝑡)

● Iterate until groups do no longer change

Annimation by: Chire 
https://commons.wikimedia.org/wiki/File:K-means_convergence.gif



𝑘
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● The 𝑘-means algorithm creates clusters of similar size

● Sometimes more flexibility about cluster size desired

● Assuming a multivariate normal mixture enables using the EM algorithm  

Figure by: Chire 
https://upload.wikimedia.org/wikipedia/commons/0/09/ClusterAnalysis_Mouse.svg



𝑘
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Lindholm, Wahlström, Lindsten, Schön, 2022

● We can look at the data and guess the components in the mixture, their mean and 

variance

● We can use a heuristic rule to determine starting values (like in Example 2)

● We can try a grid of starting parameter values

● Specifically, for the EM algorithm for normal mixtures, we can first run a classification 

algorithm and use its result as start for the EM algorithm

● Note (cp. Sec. 10.2 of Lindholm, Wahlström, Lindsten, Schön, 2022):

The 𝑘-means algorithm can be seen as special case of the EM algorithm for normal 

mixtures when the variances tend to 0

http://smlbook.org/book/sml-book-draft-latest.pdf


• Compare 𝜽(𝑡) and 𝜽(𝑡+1) and stop if they are “close enough”

• Absolut stopping criterion, 𝜽 𝑡+1 − 𝜽 𝑡 < 𝜖,

• Relative stopping criterion, 𝜽 𝑡+1 − 𝜽 𝑡 / 𝜽 𝑡+1 < 𝜖,

• Modified rel. stopping crit., 
𝜽 𝑡+1 −𝜽 𝑡

𝜽 𝑡+1 +ε
< ε

• Different norms ∙ can be used

• Instead of 𝜽(𝑡) and 𝜽(𝑡+1), one can compare 𝑔(𝜽(𝑡)) and 𝑔(𝜽(𝑡+1))
(but note: not all iterative methods require the calculation of 𝑔(𝜽(𝑡)) and 
then, it would add computational time)

• EM: 𝑔(𝜽(𝑡)) = 𝑄 𝜽 𝑡 𝒙; 𝜽 𝑡−1 ; therefore, a reasonable stopping criterion is

𝑄 𝜽 𝑡+1 𝒙; 𝜽 𝑡 − 𝑄 𝜽 𝑡 𝒙; 𝜽 𝑡−1 <ε
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Slide adapted 
from L1
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• Assume you have independent samples of some population

• In statistics, we have methods to construct confidence intervals (CIs) for a 
parameter 𝜃 of interest (e.g., mean) based on distributional assumptions; 
e.g., explicit formulas exist in case of normal distribution

• Sometimes not reasonable to make distributional assumptions

• Aim here: obtain CIs without these distributional assumption

• We take the available sample as assumption for distribution of 
population and resample from it

• We pull ourselves up by our own capabilities –
like “pulling us up from the mud by our own bootstraps” 
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• Observed data: 𝐷 = 𝑋1, … , 𝑋𝑛

• Of interest: An estimator 𝑇 𝐷 = 𝜃 for some parameter 𝜃 and its uncertainty 
(e.g., CI for 𝜃) 

• Draw 𝐵 resamples 𝐷𝑖
∗ = 𝑋1

∗, … , 𝑋𝑛
∗ of size 𝒏 from original data 𝐷 with 

replacement
• 𝐵 = 500 or 1000 has been used historically; 𝐵 = 10000 is nowadays often no problem

• Usually, there are repetitions in a resample

• Calculate the property of interest for each resample: 𝜃𝑖 = 𝑇 𝐷𝑖
∗ , 𝑖 = 1, … , 𝐵

• The distribution of these 𝐵 values (”bootstrap distribution”) gives 
information about distribution of 𝑇(𝐷)

• E.g., a CI for 𝜃 can be computed

24Advanced computational statistics L5 2025-04-29



• Rainfall data from July in 233 years in Stockholm

• What is the mean and a 95%-CI for the mean?

• A standard formulae for the CI assumes that data is 
normally distributed and uses therefore the t-
distribution:

ҧ𝑥 = 62.6 𝑚𝑚, 𝑠 = 35.0, 𝑛 = 233, 
𝑠 ҧ𝑥 = Τ𝑠 𝑛 = 2.29, 
𝑡0.025,233 = 1.970

• 95%-CI-bounds: ҧ𝑥 ± 𝑠 ҧ𝑥 ⋅ 𝑡0.025,233; here: (58.1, 67.1)

• But data here is not normally distributed

• Now, we construct a CI using the bootstrap method

25

Data source: SMHI
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• We illustrate the bootstrap using 
only the last 6 years:

• First resample:

• Second resample:

• Third resample:

• …

• 𝐵-th resample:

• The mean of each resample: 47.6, 46.3, 42.5, …, 53.7 

26

42.3, 44.1, 91.9, 47.6, 14.6,  5.9

5.9, 42.3,  5.9, 47.6, 91.9, 91.9

42.3, 44.1, 42.3, 91.9, 42.3, 14.6

47.6, 44.1, 42.3, 14.6, 91.9, 14.6

47.6, 42.3, 91.9, 91.9,  5.9, 42.3
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• From the complete data, we made 𝐵 = 1000
resamples; the 1000 means of those are in the 
histogram

• The mean of the means: 62.6 𝑚𝑚
(bootstrap estimate is here the same as the usual estimate of the mean ҧ𝑥)

• The middle 95% of the means are from 58.2 to 66.7
– this is our 95%-bootstrap-CI for the mean
This is: limits are the 2.5% and 97.5% percentiles

• This way to define the CI is called percentile 
method
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• R code using a loop for bootstrap replicates:

bo <- 1000   # bootstrap replicates

bs <- c()    # to save the results for the means

for (l in 1:bo){

x  <- sample(mrain, size=length(mrain), replace=TRUE)

bs <- c(bs, mean(x)) 

}

hist(bs)

bss <- sort(bs)

ci95 <- c(bss[round(bo*0.025)], bss[round(bo*0.975)])

ci95

• A run of this code gave (58.2, 66.7) as 95% bootstrap confidence interval
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boot

• As alternative, package boot with functions boot and boot.ci can be used
library(boot)

• Define first function of interest, e.g. the mean:
bootmean <- function(x, i) mean(x[i])

• Generate 𝐵 bootstrap resamples with function boot:
bss <- boot(mrain, bootmean, R=1000)

• You can plot a histogram of the bootstrap distribution:
hist(bss$t)

• A 95%-CI is between 2.5%- and 97.5%-percentile of bootstrap distribution:
boot.ci(bss, type=”perc”)
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• When a parametric model for the data is known or 
believed to represent the reality well, we can do 
parametric bootstrap and sample according to the 
assumed model

• Example: We assume that monthly precipitation in July 
follows a Gamma(3, 20)-distribution

• We sample 233 datapoints from Gamma(3, 20) and 
calculate parameter of interest

• Do this 𝐵 times and derive e.g. a confidence interval



• What is an estimated probability for “less than 10 𝑚𝑚 rain in next July”? 
How good is our estimation? (➔ CI)

• Reasonable to calculate proportion of years with July-rain < 10 𝑚𝑚. 
Here: in 10 of 233 years = 0.043

• To calculate a 95%-CI, we generate a bootstrap distribution
(We resample 𝐵 times and compute for each resample the proportion of  years with July-rain < 10 𝑚𝑚) 

• We use it’s 2.5%- and 97.5%-percentile: 
(0.0172, 0.0687) 

• Conclusion: The probability for < 10 𝑚𝑚 rain in July is 
between 1.7% and 6.9%; estimate is 4.3%

• (With normal assumption an estimate would be 6.6%. But a probability for < 0 𝑚𝑚 rain would be 3.7%... 
To use bootstrap gives here much better estimates than with normal assumption! You get easily a confidence interval as well.)
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boot

• Define function of interest, here proportion below 10 𝑚𝑚:
bootdry <- function(x, i) mean((x[i]<10))

• Generate 𝐵 = 100000 bootstrap resamples:
bsdry <- boot(mrain, bootdry, R=100000)

• Plot a histogram of bootstrap distribution:
hist(bsdry$t)

• Estimate proportion:
bootdry(mrain)

• A 95%-CI is between the 2.5%- and 97.5%-percentile of the bootstrap 
distribution:
boot.ci(bsdry, type=”perc”)
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• We can use the bootstrap method very flexibly, 
e.g. in linear regression if we want a CI for 
the slope or the residual standarddeviation

• Example: Experiment about the (toxic) influence 
of a fertilizer on the growth of garden cress 
(yield vs. amount of fertilizer, 𝑛 = 81)

• Estimated linear regression:
yield = 203.3 − 71.3 ∙ fertilizer

with residual standarddeviation ො𝜎 = 26.7

• CI for slope? CI for ො𝜎?
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• The dataset has 𝑛 = 81 pairs of fertilizer-yield-values

• The bootstrap resamples 𝒏 pairs with replacement, 
computes regression-slope and ො𝜎

• This is done 𝐵 times; R-code:

cressdat <- data.frame(fertilizer, yield) 

cmslope <- function(dat, i){

cm  <- lm(yield~fertilizer, subset=i, data=dat)

coef(cm)[2]

}

cb <- boot(cressdat, cmslope, R=10000)

boot.ci(cb, type="perc")

• Result for CI-limits: -83.8, -59.1
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• A function for analysis of the residual ො𝜎 is:

cmressd <- function(dat, i){

cm  <- lm(yield~fertilizer, subset=i, data=dat)

summary(cm)$sigma

}

• Result for CI-limits: 22.62, 29.89 (percentile method)

• Median (50% percentile) of bootstrap distribution: 26.32 

• Residual ො𝜎 of data: 26.72

• Percentile CI is constructed around 26.32 while it should 
be constructed around 26.72 ➔ the CI is biased
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• The percentile method can have drawbacks

• Bias: Estimate 𝜃 might be very different from median of bootstrap 
distribution, median( 𝜃𝑖), but we would like a CI constructed around 𝜃

• The bootstrap distribution might be skewed implying that the se( 𝜃) 
changes with the true 𝜃

• The BCa method (bias correction – accelerated) improves the percentile 
method by

• correcting for bias and

• adjusting the boundary alpha-levels to handle dependence of se( 𝜃) on 𝜃

• If bootstrap distribution has not these issues, BCa = percentile

• For other methods (and BCa) see Givens and Hoeting (2013), Chapter 9.3. 
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• Like percentile method, BCa uses quantiles from the bootstrap distribution, but 
instead of 𝛼/2 and 1 − 𝛼/2, it uses the two corrected quantiles

Φ(𝑧0 +
𝑧0±𝑧𝛼/2

1−𝑎 𝑧0±𝑧𝛼/2
)

• Bias: Define 𝑧0 = Φ−1(proportion of bootstrap values below estimate)

• Handling of skewness with acceleration factor 𝑎:

𝑎 =
σ𝑖=1

𝑛 𝜃(⋅) − 𝜃(𝑖)
3

6 σ𝑖=1
𝑛 𝜃(⋅) − 𝜃(𝑖)

2 3/2

where 𝜃(𝑖) is estimated leaving out observation 𝑖 and 𝜃(⋅) is mean of 𝜃(𝑖)

• This is a jackknife approach for estimating the change of se( 𝜃) when 𝜃 changes
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• Observed data: 𝐷 = 𝑋1, … , 𝑋𝑛

• Of interest: An estimator 𝑇(𝐷) for some parameter

• 𝑛 resamples defined as 𝐷𝑖
∗ = (𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋𝑛) (leave-one-out sample)

• 𝑇 𝐷1
∗ , … , 𝑇(𝐷𝑛

∗) give information about distribution of 𝑇(𝐷)

• Jackknife variance estimation for 𝑇(𝐷):  
1

𝑛 𝑛−1
σ𝑖=1

𝑛 𝑇 𝐷𝑖
∗ − 𝐽 2, where 𝐽 =

1

𝑛
σ𝑖=1

𝑛 𝑇(𝐷𝑖
∗)

• Important application both for Jackknife and bootstrap is variance estimation

• Jackknife is resampling method like bootstrap, but it is deterministic
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• In the examples we discussed, we had an estimate 𝜃 and got information 
about its uncertainty with the bootstrap approach, e.g., constructing a CI

• In bagging, bootstrap is used to improve the estimate 𝜃 itself by 1

𝐵
σ𝑖=1

𝐵 𝜃𝑖

• For example, if 𝜃 is based on model-fitting where very different models 
could be chosen only if some observations are changed, the bootstrap 
estimate is model averaging

• 𝜃 might be based on modelling with neural networks or regression models 
with data-dependent feature selection

• See Section 7.1-7.2 of Lindholm, Wahlström, Lindsten, Schön (2022)
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