@ 00

Advanced computational
statistics, lecture 6

Frank Miller, Department of Computer and Information Science,
Linkdping University

May 15, 2025

LINKOPING
IIC" UNIVERSITY

http://creativecommons.org/licenses/by-nc/4.0/

Advanced computational statistics L6 2025-05-15 2

Course schedule

Topic 1: Gradient based optimisation

Topic 2: Stochastic gradient based optimisation

Topic 3: Gradient free optimisation

Topic 4: Optimisation with constraints

Topic 5: EM algorithm and bootstrap

Topic 6: Simulation of random variables

Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

Includes schedule, reading material, lecture notes, assignments

LINKOPING
II.“ UNIVERSITY

http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

Advanced computational statistics L6 2025-05-15

Simulation in Statistics

« Computer-generated random variables

* Purpose:
« Simulate a situation where a statistical model can be assumed
« Simulate situation repeatedly to investigate properties of estimators,

confidence intervals, significance tests
- Example: power of a test in situations where assumptions are not fulfilled

« Perform Monte Carlo integration

* Problem: Given a density f of a target distribution, generate random
draws X, ..., X, which follow the target distribution

3

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 4

Random variables from familiar distributions

« Computer-generated random variables are not really random but
deterministic (Gentle, Hardle, Mori, 2012, Ch.3)

« Algorithms are used such that the deterministic nature is not visible, and
variables seem random

* Deterministic algorithm generates values between 0 and 1 which follow
well independent draws from Unif[0,1]

« Then, random variables following other familiar distributions can be
generated from Unif[0,1] and are implemented in statistical software, see

Givens and Hoeting (2013), Tab. 6.1

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 5

Random variables of familiar distributions In R

 In R, random variables can be generated for a number of distributions, e.g:

* rbeta, rcauchy, rchisq, rexp, rf, rgamma, rlnorm, rnorm,
rt, runif, rweibull

* rbinom, rgeom, rhyper, rmultinom, rnbinom, rpois
X <- rnorm(6, mean = 1.2, sd = 2)

X
[1] 3.8839870 2.8328797 3.5344539 -2.5464309 3.2059822 0.1872261

rbinom (25, size

3, prob
[1] 1 2 000002 0

0.25)
1100101122100

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 6

Random variables from non-familiar distributions

* Problem: Given a density f of a target distribution, generate random
draws X, ..., X,, which follow the target distribution

* Now: Density f of arbitrary form

« Methods we will consider:
 Inverse transformation method
* Rejection sampling
« Composition sampling
« Sampling importance resampling (SIR)
« Markov chain Monte Carlo (MCMC)

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15

Inverse transformation method

 Continuous random variable X with density f and distribution function F
* Then: F(X) is uniformly distributed on [0,1]

fix)

00 01 02 03 04

F
00 02 04 06 08 10

» Therefore: if we can generate uniformly distributed random variables U,
we can compute X = F~1(U) and obtain the desired sample

7

LINKOPING
UNIVERSITY

Advanced computational statistics L6

Inverse transformation method

« Example 1: We want to generate random variables X with triangle
distribution having density

2—2x, if0<x<1,
flx) = { 0, otherwise

* We compute the distribution function:

0, if x <0,
F(x)=f_xoof(t)dt= 2x —x?, if0<x<1,
1, if x > 1.

e The inverse distribution function is
F')=1-1-y

sincey=2x—x% © x*—-2x+y=0 o

x1’2=1iw/1—y = 1—\/1_3/

05 10 15 20

0.0

00 02 04 06 08 1.0

2025-05-15

8

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 9

Inverse transformation method

1000 random numbers for the triangle Histogram of x
distribution can be generated by:

u <- runif (1000)

X <- l-sqrt(l-u)

hist (x)

150
|

100
I

Freguency

50

0.0 02 0.4 06 0.8 1.0

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 10

Inverse transformation - discrete random variables

i | I
| | | |
0 1 2 3

« Example 2: We want to generate a random variable X being
0 with probability 0.35,
1 with probability 0.05,
2 with probability 0.4,
3 with probability 0.2

* F(x) = P(X < x); how to apply the
inverse transtformation method?

fix)
00 01 02 03 04

Fix)

00 02 04 06 08 10

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 11

Inverse transformation - discrete random variables

- Example 2: We want to generate a random variable X being
o with probability 0.35,
1 with probability 0.05,
2 with probability 0.4, i
3 with probability 0.2

00 02 04 06 08 1.0

« How to apply the inverse transformation method?
* Generate U~Unif[0,1]

« IfU < 0.35,then X =0,
if 0.35 < U < 0.4, then X =1,
if0.4 < U <0.8,then X = 2,
if 0.8 < U, then X = 3.

u <- runif (100000) Python, Julia, Matlab:
x = (u > 0.35).astype(int) + (u > 0.4).astype(int) + (u > 0.8).astype(int)

X <- (u>0.35)+(u>0.4)+ (u>0.8) x = (u.>0.35) .+ (u.>0.4) .+ (u.>0.8)

x=(u>0.35) +(>0.4)+(u>0.8);

This is 1 if the condition in (...)
is true, otherwise it is 0

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 12

Inverse transformation method

 Inverse transformation worked well in preceding examples

 In general, drawbacks are:
« Computation of F~1 might be difficult
easy,
* Not pessible to generalize to multiple dimensions*

e Often less efficient as alternatives

e *See next slide

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6

2025-05-15 13

Inverse transformation is optimal transport

e Optimal transport:
« Two probability measures F and G given

 Find a transport map T which transports
the probability mass from F to G,
optimal according to some loss function

* Under some assumptions about the loss,
T(x) = G~1(F(x)) is the optimal
transport map

« For F = uniform distribution, optimal

transport is the inverse transformation
method

« Optimal transport can be generalized to
higher dimensions

LINKOPING
UNIVERSITY

00 04 08 ao 02 04
L1 1

00 03 08

=
—
%]
[s]
F=9

Rejection sampling

» Problem: Given a density f of a target distribution, generate random draws
X, ..., X, which follow the target distribution

« It can be difficult to sample with respect to f

e(x)

e Situation: There is another density g which
can be sampled from and which is after
scaling larger than f for all x,

e(x) =g(x)/a = f(x)

for all x and some a < 1

f(x)

 e(x) is called "envelope”

density
o0 01 02 02 04 05 08

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 15

Rejection sampling

e(x) \
f(x) \/\/\

c e(x) =gx)/a = f(x) for all x and some a < 1

« Rejection sampling algorithm:

1. Sample Y~g
Sample U~Unif(0,1)

density
o0 01 02 03 04 05 086

HU < f(Y)/e(Y), accept Y; set X = Y; otherwise reject it © 1 2

If more samples desired go to 1.

> @ Db

Example (for picture above): Y = 2.21; f(Y) = 0.267,e(Y) = 0.435,
f(Y)/e(Y) =0.616; sample U; If U < 0.616, use Y, otherwise reject it

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 16

Rejection sampling

1. SampleY~g = ea
2. Sample U~Unif(0,1)
3. HU<f(Y)/e(Y), acceptY; set X =Y; otherwise rej. :
4. If more samples desired, go to 1

Example (for picture above):

(Y1,Up) = (2.21,0.492) = U; < 0.616 =>» accept Y;

density
00 01 02 03 04 05 08

(Y,,U,) = (0.17,0.952) = U, > £(0.17)/e(0.17) => reject Y, ’ 1 ? ’
(Y, Us3) = (1.76,0.250) = U; < f(1.76)/e(1.76) = accept Y3
(Y,,U,) = (1.55,0.880) = U, > f(1.55)/e(1.55) => reject Y,
(Ys, Us) = (0.90,0.619) = Us < £(0.90)/e(0.90) = accept Vs
= use (2.21,1.76,0.90)

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 17

Squeezed rejection sampling

c e(x) =gx)/a = f(x) for all xand some a < 1
* Squeezing function s(x),s(x) < f(x)

| |
—
=3 -

* Squeezed rejection sampling algorithm:

Sample Y ~g
Sample U~Unif(0,1)

density
00 01 02 02 04 085 08

. IfU <s(Y)/e(Y), acceptY;setX =Y;goto5 ' ' '
HU<f({Y)/e(Y),acceptY;setX =Y
5. If more samples desired go to 1.

Example (for picture above): Y = 0.90; s(Y) = 0.32,e(Y) = 0.55,s(Y)/e(Y) =
0.582; sample U; If U < 0.582, use Y, otherwise compute f(Y) = 0.479,
f(Y)/e(Y)=0.871,and use Y if U < 0.871, otherwise reject

N O

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 18

Adaptive (squeezed) rejection sampling

 Given f, we desire automated generation of envelope and squeezing function
« Adapt (improve) these functions where it is necessary

« Assumption: f log-concave, continuous, differentiable, f > 0 on an interval I

o Start with grid T}, = {x4, ..., x;. } of points on I; consider h = log(f)

 The tangents of the concave h in x; form an upper hull e*(x) of h,
= e(x) = exp(e*(x)) is an envelope

 The interpolations between the x; forms a lower hull s*(x) of h,
= s(x) = exp(s*(x)) is a squeezing function

» Generate Y; according to current e. If Y; rejected or (if we squeeze) if x is
accepted in Step 4 [s(x)/e(x) < U < f(x)/e(x)],thenadd x = Y; to T, = Ty4+1

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 19

Adaptive rejection sampling

2

1
« Example 3: N(0,1), f(x) = 5 €Xp (— %), T, = {x1,%,}, % = —x; = 1.2

s] ° e(x) & exp(e*(x)) ,
g g] 2 p(e”()] Proportion of waste:
4 2 o0 2 4 2 0 2 4 Here: 1 — 1/1.366 = 0.268
5 o s o1 e'(x)
E A E
g »] /h(x)=1logf(x) g &]
42 0 2 4 42 0 2 4

LINKOPING
II.“ UNIVERSITY

Adaptive rejection sampling

« An adaptive rejection sampling version exists which does not require the
derivative of h (secants instead of tangents are used, see Givens and
Hoeting (2013; Chapter 6.2.3.2)

 Adaptive rejection sampling can be used for multidimensional cases, for
example as subroutine in Gibbs sampling

« Many densities are log-concave, but some are not; non-log-concave
densities can be handled by combining it with a Metropolis step

LINKOPING
II.“ UNIVERSITY

Composition sampling

» A finite mixture distribution can be generated by:
 simulating the group-membership using the discrete distribution for
mixing parameters
 simulating the distribution of this group’s distribution

* See Gentle, Hardle, Mori (2012), Section 3.8.7 Histogram of x

* EX. 4: X normal mixture of N(0,1) and N(4,1.5%)
with mixing parameter 0.7 and 0.3, respectively

4000 8000 12000

Freguency

g <- rbinom (100000, size = 1, prob = 0.3)
x <- rnorm (100000, mean = 4*g, sd = 1+4+0.5%*q)
hist(x, breaks = 25)

4

0

LINKOPING
UNIVERSITY

Composition sampling

 More flexible code for simulating a finite mixture distribution (e.g., a finite
normal mixture) with composition sampling:

* Define mean, standard deviations and mixing parameters as vector:
. < c(_2, 5, 11) Histogram of x
sigma <- c(2.2, 1.4, 2.9) T i
prob <- c(0.4, 0.25, 0.35)
n <- 10000 T 1L i

600

400
|

 Generate mixture by: ! .

g <- sample(length(mu), n, replace=TRUE, p=prob)
x <- rnorm(n, mean = mu[g], sd = sigma[g])
hist(x, breaks = 25) 5.

b

200
I

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 23

Ex. 5: Type | error of test under wrong distribution

* Given n independent and identically distributed observations X, ..., X, with
mean [, one can test H,: p = 0 versus H;: p > 0 with the one-sample t-test

reject H, if and only if > th-1.1-q

SX
« Assumption for test: normal distribution of observations
« How sensitive is t-test if observations not normal?

« We focus on H, first: Can type I error be larger than a (such that it matters)
for certain distributions?

e Idea:

* Choose some distributions with mean = 0, simulate n repetitions,
perform t-test, and record if rejected

» Repeat this s times and check rejection rate

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 24

Ex. 5: Type | error of test under wrong distribution

Uniform Unif(-1, 1)

* For n = 10, simulate rejection rate for Unif[-1,1] . |
#Simulation of one sample t-test
s <- 100000

n <- 10

count <- 0

for (sim in 1l:s)

{ T T T T T
X <- runif(n, min = -1, max 1)))
reject <- (t.test(x, alternative "greater") $p.value < 0.05)
count <- count + reject

density
l

0o 01 02 03 04 05

} . . : " .
#Rejection rate estimate: This is 1 if the condition in (...)

rre <- count/s is true, otherwise it is 0

* Note that there are possibilities to make simulation more efficient (e.g., by
avoiding the loop) — see code on homepage

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 25

Ex. 5: Type | error of test under wrong distribution

s <-
n <-
count <-

100000
10
0

for (sim in 1l:s)

{

X

<- runif(n, min = -1, max = 1)

reject <- (t.test(x, alternative = '"greater")$p.value < 0.05)

count

}

rre <-

<- count + reject

count/s

e Precision of result?

p = true rejection rate; reject~Bin(1, p), count~Bin(s = 100000, p)

Var(count) = p(1 — p)s, Var(

count) _ p(1 — p),sd(rre) _ p(l—p)
S S

\

~ 0.0007 for p = 0.05.

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 26

Ex. 5: Type | error of test under wrong distribution

e Simulated rejection rate for Unif[—1,1] for t-test for uniformly distributed observations
n = 4,5, ..., 20 with 95%-simulation-error- .
CIs based on 100 000 sim. for each n S %
* One more loop for n used 5§ | ‘%
* Took ~1 min to simulate g o %
° HHMIHHIM
L RN
) 5| ‘lID ‘l|5 2|D

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 27

EX. 5: Type | error of test under wrong distribution

Mixture N(-2, 1) +N(2, 1)

 Again, rejection rate for n = 10, but for:
a) An equal mixture of N(—2,1) and N(2,1),
b) Distribution with density: f(x) = c exp(—x*),

c) Distribution with density:
f(x) =exp(—(x — 1)) 1{x = -1}
Which simulation method in each case?

density
000 005 010 015 020
1 I I 1 1
a
.
=
o
=

density density
0 2 4 6 00 01 02 03 04 05
1 1 1 I I I 1 1 1 I
EN B
N O
m,L g"
>|< >
= o - = o - o
%
[o
o~ B |

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 28

Sampling importance resampling (SIR)

« Methods considered so far generate the target distribution exactly

« Sampling importance resampling (SIR) is approximate method (this
approximation is often fully ok)

 Use again envelope-function g, but do not longer require the envelope being
larger than f everywhere

o If desired to draw n observations following f, start with sampling m
independent observations following g
(recommendation: m > 10n)

« Resample then n from these m as described below

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 29

Sampling importance resampling (SIR)

1. Sample m (= 10n) random variables Y, ..., Y;,, from g

2. Calculate standardized importance weights
ey = L 00/900)
=1 f(¥)/g())
for all m random draws Y, from g.

3. Resample X4, ..., X,, from Y, ..., Y;,, with replacement with probabilities
w(Y1), .., w(¥on)

* X4, ..., X, follow then approximately f

* Note: f need to be known only up to a constant (constant cancels out in
calculation of standardized weights)

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 30

Example 6: The slash distribution

« A random variable Y has slash distribution if ¥ = X /U with X~N(0,1) and
U~Unif(0,1) independently

Densities
= |
(]
— N(0,1)
= Slash
©r |
(]
o |
(]
g _
o _|
[an]
I I I I I
-10 -5 0 5 10

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 31

Sampling importance resampling (SIR) - Illlustration

« Example 6: Use slash distribution as SIR envelope g to generate
random variables following standard normal density f

library ("extraDistr") 0.4- .

sir <- function(m, n) i i

{

o
w

y <- rslash(m)
w <- dnorm(y)/dslash(y)

w <- w/sum(w)
x <- sample(y, n, replace=TRUE, prob=w) 3.4-
return (x)

} mm e

0.0
x <- sir (100000, 5000)

Normal density
=

(_
-

I
0

The simulated data follows well a normal distribution (Thanks to Yaliya Leontyeva for code and
LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 32

Sampling importance resampling (SIR) - illustration

« Method worked well since envelope (slash distribution) had heavier tails
than target distribution (standard normal)

Histogram of x

« If we run SIR to generate the slash distribution with
standard normal as envelope, no observations are
generated at tails

200 250

150

« Lowest and highest values in Y-sample receive high :
weights (overrepresentation in X-sample) :

« Recommendation: Use envelopes with heavier tails *° Hﬂmm wmﬂ

100

(or equally heavy) than the target distribution = -

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 33

Markov chain Monte Carlo (MCMC), see GH 7.1, 7.3

 The algorithms considered so far generate sequences of independent
observations which follow the target distribution exactly or approximately
(sampling importance resampling)

« We will now consider a method which generates a sequence of dependent
observations which follow the target distribution approximately

« The next observation (t + 1) will be generated based on a proposal
distribution g which depends on the current observation (t), i.e. g(: |X®)

» Since Xt*V depends on X ®) but not on earlier
observations, the sequence (X () is a Markov chain

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 34

MCMC - Metropolis-Hastings algorithm

A general method to generate the Markov chain is the Metropolis-Hastings (MH)

algorithm
+ A starting value x© is generated from some starting distribution | Jetopolis algorithm
Special case when

« Given observation x(®), generate x(*1) as follows: g is symmetric:
: . Ax®Y) = g(xO]x*
1. Sample a candidate x* from a proposal distribution g(- [x(*)) g(x'[x'?) = g(x*]x")
: f(x*) g(x+7|x o
2. Compute the MH ratio R(x(t),x*) = g(- (t)) = ff(im))
f(x(0) g(x X)

3. Sample x**D according to

x*, with probability min{R(x®, x*), 1}
x(® otherwise
4. If more observations needed, set t <- t+1;goto1

x(t+D) =

LINKOPING
II.“ UNIVERSITY

Advanced computational statistic@ (RECALL) 2025-04-01 35

Simulated annealing

« Start value x(9; stage j = 0,1, 2, ... has m; iterations; initial temperature 7,; set j = 0

« Given iteration x(*), generate x(*1) as follows:

1. Sample a candidate x* from a proposal distribution p(: |x(t)) (<) — 9009
g(x) — g(x*
g(x)—g(x), < for

2. Compute h(x(t) ,x*) = exp(-) minimisation
J

3. Define next iteration x**1 according to
£+ — x*, with probability min{h(x(t), x*), 1}
x otherwise

4. Sett <- t+1 andrepeat 1.-3. m; times
5. Update t; = a(rj_;) and m; = f(m;_q); setj <- j+1l;goto1

7; is temperature; function a should slowly decrease it; function f should be increasing

LINKOPING
II.“ UNIVERSITY

Advanced computational statistic@ (RECALL) 2025-04-01 36

Simulated annealing and Metropolis algorithm

 For fixed temperature 7, simulated annealing algorithm is a Metropolis
algorithm

» Kirkpatrick et al. (1983) proposed name simulated annealing for using it as
optimisation method

(x®)-g(x") eXp("g(x*)) (x)
. gxt)—gx* Tj f(x* *
° h(x(t)’x) = exp(-) = g(xét)) — f(x(t)) — R(x(t),x)
j exp(__r_)
J

» Key ingredient of Metropolis and simulated annealing alg.: Markov chain x(¥
has limiting stationary distribution f; for a proof see e.g. Koski (2009)

» Requirement for all: x(*) irreducible and aperiodic chain

LINKOPING
UNIVERSITY

Advanced computational statistics L6

Metropolis alg. - Ex.7

 For illustration, we consider
two-dimensional distribution
with density f according to
contour lines in figure
(extended example from L3)

 Proposal distribution
g(x*[x) = g(x]x")
——1{|x® — x*|| < r}

T2
for some constant r (here=1)

15 37

LINKOPING
UNIVERSITY

Advanced computational statistics L6 - - 15 38

Metropolis alg. - Ex.7

 Proposal distribution
g(x[x®) = g(xV]x") -

1 *
=F1{||x(t) — X < T} N
for some constant r (here=1)

e Start here with x(9=(1,-0.5)

« Randomize uniformly on unit v -
circle around x(% (proposal I
distribution); result x* =(0.58,0.08)

« f(x*) =0.296 > f(x(®)) = 0.098; so this was an uphill step and is

f(x)
@) = D

3

automatically accepted (R(x(), x*) =

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 <« - 15

Metropolis alg. - Ex.7

3

x(0)=(1,-0.5) o
Uphill steps: x(P'=(0.58,0.08)
x(?)=(-0.33,0.13)

x3)=(-0.23,0.05) ° 1

Then downhill step proposed:
x*=(-0.32,0.4)

W = S@)
R(x®, x*) = @y = 0774
Random Unif(0,1) generated: 0.573 and 2402 s

since this is smaller than R=0.774, x*) = x* =(-0.32,0.4) is accepted

Again downbhill step proposed: x*=(-0.67,1.31), R(x"V), x*) = T*) _ 0.560;
. L f(x®)

random Unif(0,1): 0.890 and rejection of x*

xG®) = x*) =(-0.32,0.4)

39

LINKOPING
UNIVERSITY

Advanced computational statistics L6 <

Metropolis alg. - Ex.7

« After several additional
iterations (see red lines for
rejected proposals), one part
of the distribution was © -
explored to a good extend

3

« Since uphill steps preferred, e
part of distribution with local
maximum at (-0.5,-0.5) is not yet “detected” at all

 Occasionally, the path will arrive at this part as well

15

40

LINKOPING
UNIVERSITY

Advanced computational statistics L6 <« - 15 41

Metropolis alg. - Ex.7

3

* Now, larger parts of
distribution explored

A couple of animations can be found on: _2
https://chi-feng.github.io/mcmec-demo/app.html#RandomWalkMH,standard
(choose Algorithm: RandomWalkMH)

LINKOPING
II.“ UNIVERSITY

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,standard

Metropolis algorithm - Example 8

(compare Givens and Hoeting, ex. 5.3)

» Consider Bayesian estimation of u based on N (u, 32/7) likelihood for u and
Cauchy(5,2) prior; observed mean=5.38

 The posterior density is proportional to product of likelihood and prior density

« Use MCMC to generate random samples following the posterior
density
* Based on these random samples, one can e.g.
* determine posterior probability that 2 < u < 8
 determine mean and variance of posterior

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15 43

Metropolis algorithm - Example 8

« We use starting value x(?) = 0, s = 1000 iterations and following proposal
distributions g(- |x®):
x (O +Unif[-0.2,0.2], O +Unif[-1,1], x© +Unif[-8,8]

- Sample path plots show simulated values x(® vs. iteration number ¢

Proposal dist.: Uniff -0.2,0.2] Proposal dist.: Uniff -1,1] Proposal dist.: Uniff -8, 8]

X

0 1 2 32 4 5 5}
4
4

I I I I I I I I I I I T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

lteration lteration lteration

Best choice

LINKOPING
II.“ UNIVERSITY

Advanced computational statistics L6 2025-05-15

Metropolis algorithm - Example 8

Proposal dist.: Unif[-0.2,0.2] Proposal dist.: Unif[-1,1] Proposal dist.: Unif[-8 , 8]

x

0 1 2 3 4 5 5]
4
4

T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

lteration lteration lteration

« Count “acceptance rate” (=proportion accepted proposals)
« Here: 08% 78% 18%

 Best results for 44% (uni-dim. case) to 23.4% (high dim. case) acceptance
probability (theory based on normal target and proposal functions, see
Givens and Hoeting, Chapter 7.3, for references about that)

« For multimodal functions lower acceptance probabilities might be good

44

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 45

Metropolis algorithm - Example 8

» Based on sample path plots, we might choose x(*)+Unif[-1,1] as proposal
distribution

» Often, one wants to discard initial samples (burn-in period) which highly
depend on starting value, e.g., 50 values + x(*)

Proposal dist.: Unif[-1, 1] Histogram of samp[52:1001]
o s
= | _
©
> 8 - H
2 | -
< - Lih]
= 5 o _
@ =
L
N N J_I—H_W
(']
o o
| ' ' ' ' ' | I I I I |
0 200 400 600 800 1000 2 3 4 5 6 7
lteration samp[52:1001]

LINKOPING
UNIVERSITY

Advanced computational statistics L6

Metropolis algorithm - Example 8

* For s = 10 000 iterations and burn-in of 50, we obtain

Proposal dist.: Unif[-1, 1] Histogram of rsamp

b

800
|

800
|

Frequency
400
|

2 4
| I
200
|

2025-05-15

0
|
0
|

I l l I I l [l l]
] 2000 4000 5000 8000 10000 2 4 6 8

lteration rsamp

« Monte Carlo estimate for P(2 < u < 8) is 0.9967
(Monte Carlo standard error=,/0.9967 * 0.0033/9950 = 0.0006)

« Estimated mean = 5.26, standarddeviation =0.99

46

LINKOPING
UNIVERSITY

2025-05-15 47

Advanced computational statistics L6

Metropolis algorithm - Example 8

 Were s = 10 000 iterations enough to ensure convergence to target distribution?
« Can depend on the purpose ...
« E.g., for estimating P(2 < u < 8)

* One can monitor cusum/convergence plots showing estimate versus iterations
(see Givens and Hoeting, ch.7.3.1.1)

e After 10 000 iterations

1.000
©0.999 —
I_}‘
i10.998 —
Vv

=
0.0.997

0.996

2000

T T T T T
4000 6000 8000 10000

lteration

After 100 000 iterations

1.000
0999 —
¥
v,0.998
& 0997 -
Q0996
0.995 —

T T T T
4e+04 6e+04 8e+04 1e+05

I I
0e+00 2e+04

lteration

 After 10 000 iterations, we might not be happy with the left graph; we run longer
and are happy with 100 000

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 48

Metropolis-Hastings with independent proposals

 Other proposal distributions g possible (not necessarily symmetric), e.g.
independent proposals

« Proposal distribution depends not on previous value, g(- |x(¥) = g(*)

re (V) panygen
F(x®) g(x[x®) r(x) /g (x®)

+ The MH ratio is R(x®, x*) =

A possible application is for Bayesian analysis (f is the posterior) with
proposal distribution g being the prior distribution

 f/g is then the likelihood

LINKOPING
UNIVERSITY

Advanced computational statistics L6 2025-05-15 49

Markov chain Monte Carlo

 In Givens and Hoeting (2013), Chapter 7 and 8, more about Markov chain
Monte Carlo algorithms

LINKOPING
II.“ UNIVERSITY

	Start / Välkommen
	Bild 1: Advanced computational statistics, lecture 6
	Bild 2: Course schedule
	Bild 3: Simulation in Statistics
	Bild 4: Random variables from familiar distributions
	Bild 5: Random variables of familiar distributions in R
	Bild 6: Random variables from non-familiar distributions
	Bild 7: Inverse transformation method
	Bild 8: Inverse transformation method
	Bild 9: Inverse transformation method
	Bild 10: Inverse transformation – discrete random variables
	Bild 11: Inverse transformation – discrete random variables
	Bild 12: Inverse transformation method
	Bild 13: Inverse transformation is optimal transport
	Bild 14: Rejection sampling
	Bild 15: Rejection sampling
	Bild 16: Rejection sampling
	Bild 17: Squeezed rejection sampling
	Bild 18: Adaptive (squeezed) rejection sampling
	Bild 19: Adaptive rejection sampling
	Bild 20: Adaptive rejection sampling
	Bild 21: Composition sampling
	Bild 22: Composition sampling
	Bild 23: Ex. 5: Type I error of test under wrong distribution
	Bild 24: Ex. 5: Type I error of test under wrong distribution
	Bild 25: Ex. 5: Type I error of test under wrong distribution
	Bild 26: Ex. 5: Type I error of test under wrong distribution
	Bild 27: Ex. 5: Type I error of test under wrong distribution
	Bild 28
	Bild 29
	Bild 30
	Bild 31: Sampling importance resampling (SIR) – Illustration
	Bild 32
	Bild 33: Markov chain Monte Carlo (MCMC), see GH 7.1, 7.3
	Bild 34: MCMC – Metropolis-Hastings algorithm
	Bild 35: Simulated annealing
	Bild 36: Simulated annealing and Metropolis algorithm
	Bild 37: Metropolis alg. – Ex.7
	Bild 38: Metropolis alg. – Ex.7
	Bild 39: Metropolis alg. – Ex.7
	Bild 40: Metropolis alg. – Ex.7
	Bild 41: Metropolis alg. – Ex.7
	Bild 42: Metropolis algorithm - Example 8
	Bild 43: Metropolis algorithm - Example 8
	Bild 44: Metropolis algorithm - Example 8
	Bild 45: Metropolis algorithm - Example 8
	Bild 46: Metropolis algorithm - Example 8
	Bild 47: Metropolis algorithm - Example 8
	Bild 48: Metropolis-Hastings with independent proposals
	Bild 49: Markov chain Monte Carlo

