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• Topic 1: Gradient based optimisation

• Topic 2: Stochastic gradient based optimisation

• Topic 3: Gradient free optimisation

• Topic 4: Optimisation with constraints

• Topic 5: EM algorithm and bootstrap

• Topic 6: Simulation of random variables

• Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

Includes schedule, reading material, lecture notes, assignments
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• Computer-generated random variables

• Purpose:

• Simulate a situation where a statistical model can be assumed 

• Simulate situation repeatedly to investigate properties of estimators, 
confidence intervals, significance tests 

• Example: power of a test in situations where assumptions are not fulfilled

• Perform Monte Carlo integration

• Problem: Given a density 𝑓 of a target distribution, generate random 
draws 𝑋1, … , 𝑋𝑛 which follow the target distribution 
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• Computer-generated random variables are not really random but 
deterministic (Gentle, Härdle, Mori, 2012, Ch.3)

• Algorithms are used such that the deterministic nature is not visible, and 
variables seem random

• Deterministic algorithm generates values between 0 and 1 which follow 
well independent draws from Unif[0,1]

• Then, random variables following other familiar distributions can be 
generated from Unif[0,1] and are implemented in statistical software, see 
Givens and Hoeting (2013), Tab. 6.1 
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R

• In R, random variables can be generated for a number of distributions, e.g:

• rbeta, rcauchy, rchisq, rexp, rf, rgamma, rlnorm, rnorm, 

rt, runif, rweibull

• rbinom, rgeom, rhyper, rmultinom, rnbinom, rpois

x <- rnorm(6, mean = 1.2, sd = 2)

x

[1]  3.8839870  2.8328797  3.5344539 -2.5464309  3.2059822  0.1872261

rbinom(25, size = 3, prob = 0.25)

[1] 1 2 0 0 0 0 0 2 3 0 0 2 1 1 0 0 1 0 1 1 2 2 1 0 0
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• Problem: Given a density 𝑓 of a target distribution, generate random 
draws 𝑋1, … , 𝑋𝑛 which follow the target distribution 

• Now: Density f of arbitrary form

• Methods we will consider:

• Inverse transformation method

• Rejection sampling

• Composition sampling

• Sampling importance resampling (SIR)

• Markov chain Monte Carlo (MCMC)
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• Continuous random variable 𝑋 with density 𝑓 and distribution function 𝐹

• Then: 𝐹(𝑋) is uniformly distributed on [0,1]

• Therefore: if we can generate uniformly distributed random variables 𝑈,
we can compute 𝑋 = 𝐹−1(𝑈) and obtain the desired sample
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• Example 1: We want to generate random variables 𝑋 with triangle 
distribution having density

𝑓 𝑥 = ቊ
2 − 2𝑥,  if 0 ≤ 𝑥 ≤ 1,

0,  otherwise

• We compute the distribution function:

𝐹 𝑥 = ∞−׬

𝑥
𝑓 𝑡  𝑑𝑡 = ቐ

0, if 𝑥 < 0,

2𝑥 − 𝑥2, if 0 ≤ 𝑥 ≤ 1,
1, if 𝑥 > 1.

• The inverse distribution function is 
𝐹−1 𝑦 = 1 − 1 − 𝑦

since 𝑦 = 2𝑥 − 𝑥2  ֞ 𝑥2 − 2𝑥 + 𝑦 = 0 ֞

𝑥1,2 = 1 ± 1 − 𝑦 ֜  1 − 1 − 𝑦
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• 1000 random numbers for the triangle 
distribution can be generated by:

u <- runif(1000)

x <- 1-sqrt(1-u)

hist(x)
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• Example 2: We want to generate a random variable 𝑋 being 
0 with probability 0.35, 
1 with probability 0.05,
2 with probability 0.4,
3 with probability 0.2

• 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥); how to apply the
inverse transformation method?
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• Example 2: We want to generate a random variable 𝑋 being 
0 with probability 0.35, 
1 with probability 0.05,
2 with probability 0.4,
3 with probability 0.2

• How to apply the inverse transformation method?

• Generate 𝑈~Unif[0,1]

• If 𝑈 ≤ 0.35, then 𝑋 = 0,
if 0.35 < 𝑈 ≤ 0.4, then 𝑋 = 1,
if 0.4 < 𝑈 ≤ 0.8, then 𝑋 = 2,
if 0.8 < 𝑈, then 𝑋 = 3.

u <- runif(100000)

x <- (u>0.35)+(u>0.4)+(u>0.8)
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This is 1 if the condition in (…) 
is true, otherwise it is 0

Python, Julia, Matlab:
x = (u > 0.35).astype(int) + (u > 0.4).astype(int) + (u > 0.8).astype(int)
x = (u .> 0.35) .+ (u .> 0.4) .+ (u .> 0.8)
x = (u > 0.35) + (u > 0.4) + (u > 0.8);



• Inverse transformation worked well in preceding examples

• In general, drawbacks are:

• Computation of 𝐹−1 might be difficult

• Not possible to generalize to multiple dimensions*

• Often less efficient as alternatives

• *See next slide
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• Optimal transport:

• Two probability measures 𝐹 and 𝐺 given

• Find a transport map 𝑇 which transports 
the probability mass from 𝐹 to 𝐺, 
optimal according to some loss function

• Under some assumptions about the loss,  
𝑇(𝑥) = 𝐺−1(𝐹 𝑥 ) is the optimal 
transport map

• For 𝐹 = uniform distribution, optimal 
transport is the inverse transformation 
method

• Optimal transport can be generalized to 
higher dimensions
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• Problem: Given a density 𝑓 of a target distribution, generate random draws 
𝑋1, … , 𝑋𝑛 which follow the target distribution

• It can be difficult to sample with respect to 𝑓

• Situation: There is another density 𝑔 which 
can be sampled from and which is after 
scaling larger than 𝑓 for all 𝑥,

𝑒(𝑥) = 𝑔(𝑥)/𝛼 ≥ 𝑓(𝑥) 
 for all 𝑥 and some 𝛼 < 1

• 𝑒(𝑥) is called ”envelope”
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• 𝑒(𝑥) = 𝑔(𝑥)/𝛼 ≥ 𝑓(𝑥) for all 𝑥 and some 𝛼 < 1

• Rejection sampling algorithm:

1. Sample 𝑌~𝑔

2. Sample 𝑈~Unif(0,1)

3. If 𝑈 ≤ 𝑓(𝑌)/𝑒(𝑌), accept 𝑌; set 𝑋 = 𝑌; otherwise reject it

4. If more samples desired go to 1.

Example (for picture above): 𝑌 = 2.21; 𝑓(𝑌) = 0.267, 𝑒(𝑌) = 0.435,
𝑓(𝑌)/𝑒(𝑌) = 0.616; sample 𝑈; If 𝑈 ≤ 0.616, use 𝑌, otherwise reject it
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1. Sample 𝑌~𝑔 = 𝑒𝛼

2. Sample 𝑈~Unif(0,1)

3. If 𝑈 ≤ 𝑓(𝑌)/𝑒(𝑌), accept 𝑌; set 𝑋 = 𝑌; otherwise rej.

4. If more samples desired, go to 1 

Example (for picture above): 

(𝑌1, 𝑈1) = (2.21,0.492)➔ 𝑈1 < 0.616➔ accept 𝑌1

(𝑌2, 𝑈2) = (0.17,0.952)➔ 𝑈2 > 𝑓(0.17)/𝑒(0.17)➔ reject 𝑌2

(𝑌3, 𝑈3) = (1.76,0.250)➔ 𝑈3 < 𝑓(1.76)/𝑒(1.76)➔ accept 𝑌3

(𝑌4, 𝑈4) = (1.55,0.880)➔ 𝑈4 > 𝑓(1.55)/𝑒(1.55)➔ reject 𝑌4

(𝑌5, 𝑈5) = (0.90,0.619)➔ 𝑈5 < 𝑓(0.90)/𝑒(0.90)➔ accept 𝑌5

➔ use (2.21, 1.76, 0.90)
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• 𝑒(𝑥) = 𝑔(𝑥)/𝛼 ≥ 𝑓(𝑥) for all x and some 𝛼 < 1

• Squeezing function 𝒔(𝒙), 𝒔(𝒙) ≤ 𝒇(𝒙)

• Squeezed rejection sampling algorithm:

1. Sample 𝑌~𝑔

2. Sample 𝑈~Unif(0,1)

3. If 𝑼 ≤ 𝒔(𝒀)/𝒆(𝒀), accept 𝒀; set 𝑿 = 𝒀; go to 5

4. If 𝑈 ≤ 𝑓(𝑌)/𝑒(𝑌), accept 𝑌; set 𝑋 = 𝑌

5. If more samples desired go to 1.

Example (for picture above): 𝑌 = 0.90; 𝑠(𝑌) = 0.32, 𝑒(𝑌) = 0.55, 𝑠(𝑌)/𝑒(𝑌) =
0.582; sample 𝑈; If 𝑈 < 0.582, use 𝑌, otherwise compute 𝑓 𝑌 = 0.479,
𝑓(𝑌)/𝑒(𝑌) = 0.871, and use 𝑌 if 𝑈 < 0.871, otherwise reject
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• Given 𝑓, we desire automated generation of envelope and squeezing function

• Adapt (improve) these functions where it is necessary

• Assumption: 𝑓 log-concave, continuous, differentiable, 𝑓 > 0 on an interval 𝐼

• Start with grid 𝑇𝑘 = {𝑥1, … , 𝑥𝑘} of points on 𝐼; consider ℎ = log(𝑓)

• The tangents of the concave ℎ in 𝑥𝑖 form an upper hull 𝑒∗(𝑥) of ℎ, 
➔ 𝑒 𝑥 = exp(𝑒∗ 𝑥 ) is an envelope

• The interpolations between the 𝑥𝑖 forms a lower hull 𝑠∗(𝑥) of ℎ, 
➔ 𝑠 𝑥 = exp(𝑠∗ 𝑥 ) is a squeezing function

• Generate 𝑌𝑖 according to current 𝑒. If 𝑌𝑖 rejected or (if we squeeze) if 𝑥 is 
accepted in Step 4 [𝑠(𝑥)/𝑒(𝑥) < 𝑈 ≤ 𝑓(𝑥)/𝑒(𝑥)], then add 𝑥 = 𝑌𝑖 to 𝑇𝑘 ➔ 𝑇𝑘+1
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• Example 3: 𝑁(0,1), 𝑓 𝑥 =
1

2𝜋
exp −

𝑥2

2
, 𝑇2 = {𝑥1, 𝑥2}, 𝑥2 = −𝑥1 = 1.2
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Proportion of waste: 

1 − 1/ න
−∞

∞

𝑒 𝑥 𝑑𝑥

Here: 1 − 1/1.366 = 0.268

𝑒∗ 𝑥

𝑒 𝑥 = exp(𝑒∗ 𝑥 )

𝑓 𝑥

ℎ 𝑥 = log 𝑓 𝑥



• An adaptive rejection sampling version exists which does not require the 
derivative of ℎ (secants instead of tangents are used, see Givens and 
Hoeting (2013; Chapter 6.2.3.2)

• Adaptive rejection sampling can be used for multidimensional cases, for 
example as subroutine in Gibbs sampling

• Many densities are log-concave, but some are not; non-log-concave 
densities can be handled by combining it with a Metropolis step
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• A finite mixture distribution can be generated by:

• simulating the group-membership using the discrete distribution for 
mixing parameters

• simulating the distribution of this group’s distribution  

• See Gentle, Härdle, Mori (2012), Section 3.8.7

• Ex. 4: 𝑋 normal mixture of 𝑁(0,1) and 𝑁(4,1.52)
with mixing parameter 0.7 and 0.3, respectively

g <- rbinom(100000, size = 1, prob = 0.3)

x <- rnorm(100000, mean = 4*g, sd = 1+0.5*g)

hist(x, breaks = 25)
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• More flexible code for simulating a finite mixture distribution (e.g., a finite 
normal mixture) with composition sampling:

• Define mean, standard deviations and mixing parameters as vector:

mu    <- c(-2, 5, 11)

sigma <- c(2.2, 1.4, 2.9)

prob <- c(0.4, 0.25, 0.35)

n     <- 10000

• Generate mixture by:

g <- sample(length(mu), n, replace=TRUE, p=prob)

x <- rnorm(n, mean = mu[g], sd = sigma[g])

hist(x, breaks = 25)
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• Given 𝑛 independent and identically distributed observations  𝑋1, … , 𝑋𝑛 with 
mean µ, one can test 𝐻0: µ = 0 versus 𝐻1: µ > 0 with the one-sample t-test

reject 𝐻0 if and only if
𝑛 ҧ𝑥

𝑠𝑥
> 𝑡𝑛−1;1−𝛼

• Assumption for test: normal distribution of observations

• How sensitive is t-test if observations not normal? 

• We focus on 𝐻0 first: Can type I error be larger than 𝛼 (such that it matters) 
for certain distributions?

• Idea: 

• Choose some distributions with mean = 0, simulate 𝑛 repetitions, 
perform t-test, and record if rejected

• Repeat this 𝑠 times and check rejection rate 
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• For 𝑛 = 10, simulate rejection rate for Unif[-1,1] 
#Simulation of one sample t-test

s     <- 100000

n     <- 10

count <- 0

for (sim in 1:s)

{

x      <- runif(n, min = -1, max = 1)

reject <- (t.test(x, alternative = "greater")$p.value < 0.05)

count  <- count + reject

}

#Rejection rate estimate:

rre <- count/s

• Note that there are possibilities to make simulation more efficient (e.g., by 
avoiding the loop) – see code on homepage 
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This is 1 if the condition in (…) 
is true, otherwise it is 0



s     <- 100000

n     <- 10

count <- 0

for (sim in 1:s)

{

x      <- runif(n, min = -1, max = 1)

reject <- (t.test(x, alternative = "greater")$p.value < 0.05)

count  <- count + reject

}

rre <- count/s

• Precision of result?

𝑝 = true rejection rate; reject~𝐵𝑖𝑛 1, 𝑝 , count~𝐵𝑖𝑛 𝑠 = 100000, 𝑝

𝑉𝑎𝑟 count = 𝑝 1 − 𝑝 𝑠, 𝑉𝑎𝑟
count

𝑠
=

𝑝 1 − 𝑝

𝑠
, 𝑠𝑑 rre =

𝑝 1 − 𝑝

𝑠

≈ 0.0007 for 𝑝 = 0.05.
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• Simulated rejection rate for Unif[-1,1] for 
𝑛 = 4, 5, … , 20 with 95%-simulation-error-
CIs based on 100 000 sim. for each 𝑛

• One more loop for 𝑛 used 

• Took ~1 min to simulate
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• Again, rejection rate for 𝑛 = 10, but for:

a) An equal mixture of 𝑁(−2,1) and 𝑁(2,1), 

b) Distribution with density: 𝑓(𝑥) = 𝑐 exp(−𝑥4), 

c) Distribution with density: 
𝑓(𝑥) = exp(− 𝑥 − 1 ) 𝟏{𝑥 ≥ −1}

Which simulation method in each case?

2025-05-15Advanced computational statistics L6 27



• Methods considered so far generate the target distribution exactly

• Sampling importance resampling (SIR) is approximate method (this 
approximation is often fully ok)

• Use again envelope-function 𝑔, but do not longer require the envelope being 
larger than 𝑓 everywhere

• If desired to draw 𝑛 observations following 𝑓, start with sampling 𝑚
independent observations following 𝑔
(recommendation: 𝑚 ≥ 10𝑛)

• Resample then 𝑛 from these 𝑚 as described below
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1. Sample 𝑚 (≥ 10𝑛) random variables 𝑌1, … , 𝑌𝑚 from 𝑔

2. Calculate standardized importance weights

𝑤 𝑌𝑖 =
𝑓(𝑌𝑖)/𝑔(𝑌𝑖)

σ𝑗=1
𝑚 𝑓(𝑌𝑗)/𝑔(𝑌𝑗)

for all 𝑚 random draws 𝑌𝑖 from 𝑔.

3. Resample 𝑋1, … , 𝑋𝑛 from 𝑌1, … , 𝑌𝑚 with replacement with probabilities 
𝑤 𝑌1 , … , 𝑤 𝑌𝑚

• 𝑋1, … , 𝑋𝑛 follow then approximately 𝑓

• Note: 𝑓 need to be known only up to a constant (constant cancels out in 
calculation of standardized weights)
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• A random variable 𝑌 has slash distribution if 𝑌 = 𝑋/𝑈 with 𝑋~𝑁(0,1) and 
𝑈~Unif(0,1) independently 
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• Example 6: Use slash distribution as SIR envelope 𝑔 to generate 
random variables following standard normal density 𝑓

library("extraDistr") # used for computation of slash 

# density and simulation

sir <- function(m, n)

{

# m - sample size from the envelope distribution

# n - resample size

# relative to n, m should be large

y <- rslash(m) # sample candidates Y1,...Ym iid from g

w <- dnorm(y)/dslash(y)

w <- w/sum(w) # calculate the standardized weights

x <- sample(y, n, replace=TRUE, prob=w) # resample with 

# probabilities = w

return(x)

}

x <- sir(100000, 5000)

The simulated data follows well a normal distribution

2025-05-15Advanced computational statistics L6 31

(Thanks to Yuliya Leontyeva for code and 
illustration on this slide!)



• Method worked well since envelope (slash distribution) had heavier tails 
than target distribution (standard normal)

• If we run SIR to generate the slash distribution with 
standard normal as envelope, no observations are 
generated at tails 

• Lowest and highest values in 𝑌-sample receive high 
weights (overrepresentation in 𝑋-sample)

• Recommendation: Use envelopes with heavier tails 
(or equally heavy) than the target distribution
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• The algorithms considered so far generate sequences of independent
observations which follow the target distribution exactly or approximately 
(sampling importance resampling)

• We will now consider a method which generates a sequence of dependent
observations which follow the target distribution approximately

• The next observation (𝑡 + 1) will be generated based on a proposal 

distribution g which depends on the current observation (𝑡), i.e. 𝑔(· |𝑋 𝑡 )

• Since 𝑋 𝑡+1 depends on 𝑋 𝑡 but not on earlier 

observations, the sequence (𝑋 𝑡 ) is a Markov chain
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• A general method to generate the Markov chain is the Metropolis-Hastings (MH) 
algorithm

• A starting value 𝒙(0) is generated from some starting distribution

• Given observation 𝒙(𝑡), generate 𝒙(𝑡+1) as follows:

1. Sample a candidate 𝒙∗ from a proposal distribution 𝑔(· |𝒙 𝑡 )

2. Compute the MH ratio 𝑅 𝒙 𝑡 , 𝒙∗ =
𝑓 𝒙∗  𝑔 𝒙 𝑡 𝒙∗

𝑓 𝒙 𝑡  𝑔 𝒙∗ 𝒙 𝑡

3. Sample 𝒙(𝑡+1) according to 

𝒙(𝑡+1) = ൝
𝒙∗, with probability min{𝑅 𝒙(𝑡), 𝒙∗ , 1}

𝒙(𝑡), otherwise 

4. If more observations needed, set t <- t+1; go to 1
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Metropolis algorithm
Special case when
𝑔 is symmetric: 

𝑔 𝒙∗ 𝒙 𝑡 = 𝑔 𝒙 𝑡 𝒙∗

=
𝑓 𝒙∗  

𝑓 𝒙 𝑡  



• Start value 𝒙(0); stage 𝑗 = 0, 1, 2, … has 𝑚𝑗 iterations; initial temperature 𝜏0; set 𝑗 = 0

• Given iteration 𝒙(𝑡), generate 𝒙(𝑡+1) as follows:

1. Sample a candidate 𝒙∗ from a proposal distribution 𝑝(· |𝒙 𝑡 )

2. Compute ℎ 𝒙 𝑡 , 𝒙∗ = exp(
𝑔 𝒙∗ −𝑔 𝒙 𝑡

𝜏𝑗
)

3. Define next iteration 𝒙(𝑡+1) according to

𝒙(𝑡+1) = ൝
𝒙∗, with probability min{ℎ 𝒙(𝑡), 𝒙∗ , 1}

𝒙(𝑡), otherwise 

4. Set t <- t+1 and repeat 1.-3. 𝑚𝑗 times 

5. Update 𝜏𝑗 = 𝛼(𝜏𝑗−1) and 𝑚𝑗 = 𝛽(𝑚𝑗−1); set j <- j+1; go to 1

𝜏𝑗 is temperature; function 𝛼 should slowly decrease it; function 𝛽 should be increasing
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𝑔 𝒙 𝑡 − 𝑔 𝒙∗  

for 
minimisation

(RECALL)



• For fixed temperature 𝜏, simulated annealing algorithm is a Metropolis 
algorithm 

• Kirkpatrick et al. (1983) proposed name simulated annealing for using it as 
optimisation method

• ℎ 𝒙 𝑡 , 𝒙∗ = exp
𝑔 𝒙 𝑡 −𝑔 𝒙∗

𝜏𝑗
=

exp −
𝑔 𝒙∗

𝜏𝑗

exp −
𝑔 𝒙(𝑡)

𝜏𝑗

=
𝑓 𝒙∗

𝑓 𝒙(𝑡) = 𝑅(𝒙(𝑡), 𝒙∗)

• Key ingredient of Metropolis and simulated annealing alg.: Markov chain 𝒙 𝒕

has limiting stationary distribution 𝒇; for a proof see e.g. Koski (2009)

• Requirement for all: 𝒙 𝑡 irreducible and aperiodic chain

2025-04-01Advanced computational statistics L3 36(RECALL)



2025-05-15Advanced computational statistics L6 37

• For illustration, we consider
two-dimensional distribution 
with density f according to 
contour lines in figure
(extended example from L3)

• Proposal distribution 

𝑔 𝒙∗ 𝒙 𝑡 = 𝑔 𝒙 𝑡 𝒙∗

=
1

𝜋𝑟21{ 𝒙(𝑡) − 𝒙∗ < 𝑟}

for some constant r (here=1)
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• Proposal distribution 

𝑔 𝒙∗ 𝒙 𝑡 = 𝑔 𝒙 𝑡 𝒙∗

=
1

𝜋𝑟21{ 𝒙(𝑡) − 𝒙∗ < 𝑟}

for some constant r (here=1) 

• Start here with 𝒙(0)=(1,-0.5)

• Randomize uniformly on unit

circle around 𝒙(0) (proposal 
distribution); result 𝒙∗ =(0.58,0.08)

• 𝑓(𝒙∗) = 0.296 > 𝑓(𝒙(0)) = 0.098; so this was an uphill step and is 

automatically accepted (𝑅 𝒙 𝑡 , 𝒙∗ =
𝑓 𝒙∗

𝑓 𝒙 𝑡  
> 1) 
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• 𝒙(0)=(1,-0.5)

• Uphill steps: 𝒙(1)=(0.58,0.08)

• 𝒙(2)=(-0.33,0.13)

• 𝒙(3)=(-0.23,0.05)

• Then downhill step proposed:
𝒙∗=(-0.32,0.4), 
𝑅 𝒙 𝑡 , 𝒙∗ =

𝑓 𝒙∗

𝑓 𝒙 𝑡  
= 0.774

• Random Unif(0,1) generated: 0.573 and 
since this is smaller than R=0.774, 𝒙 4 = 𝒙∗ =(-0.32,0.4) is accepted

• Again downhill step proposed: 𝒙∗=(-0.67,1.31), 𝑅 𝒙 𝑡 , 𝒙∗ =
𝑓 𝒙∗

𝑓 𝒙 𝑡  
= 0.560; 

random Unif(0,1): 0.890 and rejection of 𝒙∗

• 𝒙 5 = 𝒙 4 =(-0.32,0.4)



• After several additional 
iterations (see red lines for 
rejected proposals), one part 
of the distribution was 
explored to a good extend

• Since uphill steps preferred, 
part of distribution with local 
maximum at (-0.5,-0.5) is not yet ”detected” at all

• Occasionally, the path will arrive at this part as well

2025-05-15Advanced computational statistics L6 40



2025-05-15Advanced computational statistics L6 41

• Now, larger parts of 
distribution explored

• A couple of animations can be found on:
https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,standard
(choose Algorithm: RandomWalkMH)

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,standard


(compare Givens and Hoeting, ex. 5.3)

• Consider Bayesian estimation of 𝜇 based on 𝑁(𝜇, 32/7) likelihood for 𝜇 and 
Cauchy(5,2) prior; observed mean=5.38 

• The posterior density is proportional to product of likelihood and prior density

• Use MCMC to generate random samples following the posterior 
density 

• Based on these random samples, one can e.g.

• determine posterior probability that 2 ≤ 𝜇 ≤ 8

• determine mean and variance of posterior
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• We use starting value 𝑥 0 = 0, 𝑠 = 1000 iterations and following proposal 

distributions 𝑔(· |𝑥 𝑡 ):

𝑥 𝑡 +Unif[-0.2,0.2], 𝑥 𝑡 +Unif[-1,1], 𝑥 𝑡 +Unif[-8,8]

• Sample path plots show simulated values 𝑥 𝑡 vs. iteration number 𝑡
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Best choice



• Count “acceptance rate” (=proportion accepted proposals) 

• Here:                     98%                           78%                          18%

• Best results for 44% (uni-dim. case) to 23.4% (high dim. case) acceptance 
probability (theory based on normal target and proposal functions, see 
Givens and Hoeting, Chapter 7.3, for references about that)

• For multimodal functions lower acceptance probabilities might be good
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• Based on sample path plots, we might choose 𝑥 𝑡 +Unif[-1,1] as proposal 
distribution

• Often, one wants to discard initial samples (burn-in period) which highly 

depend on starting value, e.g., 50 values + 𝑥 0
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• For 𝑠 = 10 000 iterations and burn-in of 50, we obtain

• Monte Carlo estimate for 𝑃(2 ≤ 𝜇 ≤ 8) is 0.9967
(Monte Carlo standard error= 0.9967 ∗ 0.0033/9950 = 0.0006)

• Estimated mean = 5.26, standarddeviation =0.99 
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• Were 𝑠 = 10 000 iterations enough to ensure convergence to target distribution?

• Can depend on the purpose …

• E.g., for estimating 𝑃(2 ≤ 𝜇 ≤ 8)

• One can monitor cusum/convergence plots showing estimate versus iterations 
(see Givens and Hoeting, ch.7.3.1.1)

• After 10 000 iterations

• After 10 000 iterations, we might not be happy with the left graph; we run longer 
and are happy with 100 000
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After 100 000 iterations



• Other proposal distributions 𝑔 possible (not necessarily symmetric), e.g.
independent proposals

• Proposal distribution depends not on previous value, 𝑔(· |𝒙 𝑡 ) = 𝑔(·)

• The MH ratio is 𝑅 𝒙 𝑡 , 𝒙∗ =
𝑓 𝒙∗  𝑔 𝒙 𝑡 𝒙∗

𝑓 𝒙 𝑡  𝑔 𝒙∗ 𝒙 𝑡 =
𝑓 𝒙∗ /𝑔(𝒙∗) 

𝑓 𝒙 𝑡  /𝑔(𝒙 𝑡 )

• A possible application is for Bayesian analysis (𝑓 is the posterior) with 
proposal distribution 𝑔 being the prior distribution

• 𝑓/𝑔 is then the likelihood
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• In Givens and Hoeting (2013), Chapter 7 and 8, more about Markov chain 
Monte Carlo algorithms
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