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• Topic 1: Gradient based optimisation

• Topic 2: Stochastic gradient based optimisation

• Topic 3: Gradient free optimisation

• Topic 4: Optimisation with constraints

• Topic 5: EM algorithm and bootstrap

• Topic 6: Simulation of random variables

• Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

Includes schedule, reading material, lecture notes, assignments
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• Numerical integration

• Newton-Côtes rules

• Gaussian quadrature

• Importance sampling

• Antithetic sampling 

• Combining importance and antithetic sampling
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• Expected value: 𝐸 𝑋 = 
−∞

∞
𝑥 ∙ 𝑓 𝑥 𝑑𝑥

• Variance: Var 𝑋 = 
−∞

∞
(𝑥 − 𝐸(𝑋))2∙ 𝑓 𝑥 𝑑𝑥

• Probabilities for distributions with given density:

𝑃 𝑋 ≤ 𝑦 = න

−∞

𝑦

𝑓 𝑥 𝑑𝑥

• The likelihood function might be an integral, e.g., in mixed effect models like in 
the Alzheimer’s example by Givens and Hoeting, ch.5:

𝐿 𝛽, 𝜎𝛾
2 𝑦 = ෑ

𝑖=1

22

න 𝜙(𝛾𝑖; 0, 𝜎𝛾
2) ෑ

𝑗=1

5

𝑓(𝑦𝑖𝑗|λ𝑖𝑗) 𝑑𝛾𝑖

where 𝜙 is normal density and 𝑓 Poisson density
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• Analytical integration (in rare cases …)

• Numerical integration (Evaluation of integrant at a finite number of points 
and compute weighted sum)

• Using Monte Carlo methods
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• Computation of 𝑎

𝑏
𝑓 𝑥 𝑑𝑥

• Divide first [𝑎, 𝑏] into 𝑛 subintervals 𝑥𝑖 , 𝑥𝑖+1 , 𝑖 = 0, … , 𝑛 − 1 (𝑎 = 𝑥0, 𝑏 = 𝑥𝑛); 

then 𝑎

𝑏
𝑓 𝑥 𝑑𝑥 = σ𝑖=0

𝑛−1 𝑥𝑖

𝑥𝑖+1 𝑓 𝑥 𝑑𝑥

• Use a “simple rule” by choosing 𝑚 + 1 nodes 𝑥𝑖𝑗
∗ in 𝑥𝑖 , 𝑥𝑖+1 and approximate 

𝑥𝑖

𝑥𝑖+1 𝑓 𝑥 𝑑𝑥 ≈ σ𝑗=0
𝑚 𝐴𝑖𝑗𝑓 𝑥𝑖𝑗

∗
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• Computation of 𝑥𝑖

𝑥𝑖+1 𝑓 𝑥 𝑑𝑥 by σ𝑗=0
𝑚 𝐴𝑖𝑗𝑓 𝑥𝑖𝑗

∗

• 𝑚 + 1 equally spaced nodes 𝑥𝑖𝑗
∗ in 𝑥𝑖 , 𝑥𝑖+1

• Riemann rule (𝑚 = 0): 𝑥𝑖0
∗ = 𝑥𝑖, 𝐴𝑖0 = 𝑥𝑖+1 − 𝑥𝑖

• Trapezoidal rule (𝑚 = 1): 𝑥𝑖0
∗ = 𝑥𝑖 , 𝑥𝑖1

∗ = 𝑥𝑖+1, 𝐴𝑖0 = 𝐴𝑖1 = 𝑥𝑖+1−𝑥𝑖
2

• Simpson’s rule (𝑚 = 2): 𝑥𝑖0
∗ = 𝑥𝑖 , 𝑥𝑖1

∗ = 𝑥𝑖+𝑥𝑖+1
2

, 𝑥𝑖2
∗ = 𝑥𝑖+1, 

𝐴𝑖0 = 𝐴𝑖2 = 𝑥𝑖+1−𝑥𝑖
6

, 𝐴𝑖1 = 4 ∙ 𝑥𝑖+1−𝑥𝑖
6

• Compare Givens and Hoeting, Figure 5.2
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• Computation of 𝑎

𝑏
𝑓 𝑥 𝑑𝑥

• We use equally spaced 𝑥𝑖, i.e., 𝑥𝑖 = 𝑖ℎ + 𝑎, ℎ =
𝑏−𝑎

𝑛

• Then the trapezoidal rule becomes: 𝑎

𝑏
𝑓 𝑥 𝑑𝑥 ≈ ℎ

2
𝑓 𝑎 +ℎ σ𝑖=1

𝑛−1 𝑓 𝑥𝑖 +
ℎ

2
𝑓 𝑏
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h

ℎ
2𝑓 𝑥0 +

ℎ
2𝑓(𝑥1) ℎ

2𝑓 𝑥1 +
ℎ
2𝑓(𝑥2)



• 𝑋 standard normal distributed 

• Compute 𝑃(−1.5 < 𝑋 < 1.5) = 
−1.5

1.5
𝜑 𝑥 𝑑𝑥 with 

𝜑 𝑥 = 1

2𝜋
𝑒−𝑥2/2 using the trapezoidal method

• 𝑛 =  :4
−1.5

1.5
𝜑 𝑥 𝑑𝑥 ≈

3

4
(𝜑 −1.5

2
+ 𝜑 −0.75 + 𝜑 0 + 𝜑 0.75 + 𝜑 1.5

2
)

=
3

4
(0.1295/2+0.3011+0.3989+0.3011+0.1295/2)=0.8481

• Iterative application of the trapezoidal rule:

• To obtain in a next step a better approximation, use 𝑛 = 8, compute additionally 
𝜑 −1.125 , 𝜑 −0.375 , 𝜑 0.375 , 𝜑 1.125 , and 

3

8
(𝜑 −1.5

2
+ 𝜑 −1.125 + 𝜑 −0.75 +

⋯ + 𝜑 1.125 + 𝜑 1.5

2
)

• Do this until stopping criterion met

• A relative stopping criterion is reasonable here
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• With a relative stopping criterion cc = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙−𝑜𝑙𝑑
−1 < 10−6, we obtain following 

approximations of the integral:

• Using a build-in-function: 
pnorm(1.5) - pnorm(-1.5) = 0.8663856
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nodes integr-ap log_10(cc)

4  0.8480511

    8  0.8618243 -1.7893847

   16  0.8652468 -2.4010844

   32  0.8661010 -3.0055700

   64  0.8663144 -3.6082363

  128  0.8663678 -4.2104480

  256  0.8663812 -4.8125460

  512  0.8663845 -5.4146154

 1024  0.8663853 -6.0166778

This means that cc = 10-1.789



• Faster if one reuses already computed values for next iteration
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𝑥0
(0)

𝑥1
(0)

𝑥2
(0)

𝑥3
(0)

𝑥4
(0)

𝑛 = 4

𝑥0
(1)

𝑥2
(1)

𝑥4
(1)

𝑥6
(1)

𝑥8
(1)

𝑛 = 8
𝑥1

(1)
𝑥3

(1)
𝑥5

(1)
𝑥7

(1)

𝑛 = 16
𝑥16

(2)𝑥0
(2)

𝑥1
(2)



• Newton-Côtes rules based on equidistant nodes

• Gaussian quadrature uses idea that it might be better to be more flexible and allow 
arbitrary distances between nodes 𝑥𝑖 and corresponding weights 𝐴𝑖 to compute

න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥 ≈ 
𝑖=0

𝑚

𝐴𝑖𝑓 𝑥𝑖

• Gaussian quadrature is defined for given weight function 𝑤(𝑥)

න

𝑎

𝑏

𝑓 𝑥 𝑤(𝑥)𝑑𝑥 ≈ 
𝑖=0

𝑚

𝐴𝑖𝑓 𝑥𝑖

• For 𝑤 𝑥 = 𝑒−𝑥2
: “Gauss-Hermite” (note: Givens and Hoeting use Gauss-Hermite with 𝑤 𝑥 = 𝑒−𝑥2/2)
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• Gauss-Hermite quadrature uses 𝑤 𝑥 = 𝑒−𝑥2
and can integrate from -∞ to +∞.

• E.g. for 𝑚 + 1 = 7 nodes, 𝑥𝑖 and 𝐴𝑖 are in following table:

• Given a function 𝑓(𝑥) and 𝑓∗(𝑥) = 𝑓(𝑥)/𝑤(𝑥), we approximate the integral by

න

−∞

∞

𝑓 𝑥 𝑑𝑥 = න

−∞

∞

𝑓∗ 𝑥 𝑤(𝑥)𝑑𝑥 ≈ 
𝑖=0

6

𝐴𝑖𝑓∗ 𝑥𝑖
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𝑥𝑖 -2.652 -1.674 -0.816 0 0.816 1.674 2.652

𝐴𝑖 0.001 0.055 0.426 0.810 0.426 0.055 0.001



• 𝑓∗(𝑥) = 𝑓(𝑥)/𝑤(𝑥), −∞

∞
𝑓 𝑥 𝑑𝑥 = ∞−

∞
𝑓∗ 𝑥 𝑤(𝑥)𝑑𝑥 ≈ σ𝑖=0

6 𝐴𝑖𝑓∗ 𝑥𝑖 with 

𝑤 𝑥 = 𝑒−𝑥2

• Example: 𝑓 𝑥 =
1

𝜋
𝑒−𝑥2

: Compute numerically integral from -∞ to +∞ 

with Gauss-Hermite and 𝑚 = 6 (we know that this should be 1 since this is 
the density of normal distribution with variance=1/2)

• ∞−

∞
𝑓 𝑥 𝑑𝑥 = ∞−

∞ 1

𝜋
𝑤(𝑥)𝑑𝑥 ≈

1

𝜋
σ𝑖=0

6 𝐴𝑖 ≈
1

𝜋
1.772454 ≈ 1,000000
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𝑥𝑖 -2.652 -1.674 -0.816 0 0.816 1.674 2.652

𝐴𝑖 0.001 0.055 0.426 0.810 0.426 0.055 0.001



• Adaptive quadrature can introduce more points depending on the local 
behavior of 𝑓: in regions where the integral approximation is not yet 
stable (e.g. since 𝑓 has a large change), more nodes might be added 

• The R-function integrate uses adaptive Gaussian quadrature

• The algorithms discussed work in general well for one-dimensional cases

• For 2d or maybe 3d problems, they might be applied iteratively

• Curse of dimensionality: runtime growing exponentially with dimension

• For higher dimension, Monte Carlo integration often preferable
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• In L6, we have generated 𝑋1, … , 𝑋𝑛 from a target distribution 𝑓

• A main use of these random draws is Monte Carlo integration:
Calculate  𝑓 𝑥 𝑑𝑥 or, more general,  ℎ 𝑥 𝑓 𝑥 𝑑𝑥 

• A Monte Carlo estimator of  ℎ 𝑥 𝑓 𝑥 𝑑𝑥 is:    Ƹ𝜇𝑀𝐶 =
1

𝑛
σ𝑖=1

𝑛 ℎ(𝑋𝑖)

• If ℎ(𝑥) = 𝑥, we estimate the distribution’s mean with Ƹ𝜇𝑀𝐶 = ത𝑋

• If ℎ(𝑥) = (𝑥 − ത𝑋)2, we estimate the distribution’s variance

• If ℎ(𝑥) = 𝟏{𝑥 > 𝑐}, we estimate probability to be > 𝑐, e.g., a rejection 

probability: −∞

∞
ℎ 𝑥 𝑓 𝑥 𝑑𝑥 = 𝑐

∞
𝑓 𝑥 𝑑𝑥 = 𝑃 𝑋 > 𝑐

(see t-test simulation example in L6 and following example)
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• Background: Clinical study with two significance tests

• 𝑛1 patients treated with high dose of a drug, 𝑛2 with low dose, 𝑛𝑃 with placebo; 
high dose compared to placebo (𝑍1) and low dose compared to placebo (𝑍2)

Test 1: Reject 𝐻01 if 𝑍1 > 𝑐
Test 2: Reject 𝐻02 if 𝑍2 > 𝑐

• Let 𝑍1 and 𝑍2 be standard normal distributed test statistics

• If 𝑐 chosen conventionally, 𝑐 = 1.96 for 𝛼 = 0.025, 𝑃 𝑍𝑖 > 𝑐 = 0.025, 𝑖 = 1,2

• In this context, desired to control FamilyWise Error Rate (FWER) 
𝑃(𝑍1 > 𝑐 or 𝑍2 > 𝑐) (reject any of the two)

• 𝑍1 and 𝑍2 are correlated
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• We have 𝑍 = 𝑍1
𝑍2

~𝑁 0
0

,
1 𝜌
𝜌 1

(multivariate normal) and want to 

determine 𝑐 such that 𝑃(𝑍1 > 𝑐 or 𝑍2 > 𝑐) = 𝛼

• Sample from multivariate normal

• Determine Monte Carlo integral estimate for 𝑃(𝑍1 > 𝑐 or 𝑍2 > 𝑐) for arbitrary 𝑐

• Search then 𝑐 such that 𝑃 𝑍1 > 𝑐 or 𝑍2 > 𝑐 = 𝛼 by bisection or sorting 
max(𝑍1, 𝑍2) and taking 97.5%-percentile for 𝛼 = 2.5%

• With                                                                          we have 
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න
ℝ2

ℎ 𝒙 𝑓 𝒙 𝑑𝒙 = න
−∞

∞

න
−∞

∞

ℎ 𝑥1, 𝑥2 𝑓 𝑥1, 𝑥2 𝑑𝑥1 𝑑𝑥2 = 𝑃(𝑍1 > 𝑐 or 𝑍2 > 𝑐)

ℎ 𝑥1, 𝑥2 = 𝟏 𝑥1 > 𝑐 or 𝑥2 > 𝑐 = 𝟏 max 𝑥1, 𝑥2 > 𝑐



• 10 000 random draws of bivariate 
normal with 𝜌 = 0.5

• For 𝑐 = 2.21 are 2.5% of draws 
upper and right to the red lines

• FWER is controlled at 𝛼 = 2.5%, 
if we reject any of 𝐻0𝑖 for 𝑍𝑖 > 2.21
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• R program to derive critical value based on Monte Carlo:
n   <- 1e+4
rho <- 0.5
x   <- matrix(rnorm(2*n), ncol = 2) 
y   <- cbind(x[,1], rho * x[,1] + sqrt(1-rho^2) * x[,2]) #Multiv. normal
ym <- apply(y, 1, max)    #Row-wise maximum
yms <- sort(ym)
cv  <- yms[round(n*0.975)] #Pick 97.5%-percentile in sample as critical value
cv

• Function qmvnorm in R-package mvtnorm can calculate/simulate this value, too

• In Julia, Matlab, and Python, there is no equivalent package like mvtnorm, and one 
needs to implement the computation as above

library(mvtnorm)
qmvnorm(0.975, tail = "lower.tail", corr = matrix(c(1,0.5,0.5,1), ncol = 2))
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Row-Wise maximum in Julia: mapslices(maximum, y; dims=2)[:, 1]; 
in Python: np.max(y, axis=1); in Matlab: max(y, [], 2); 



• A Monte Carlo estimator of  ℎ 𝑥 𝑓 𝑥 𝑑𝑥 is

Ƹ𝜇𝑀𝐶 =
1

𝑛


𝑖=1

𝑛

ℎ(𝑋𝑖)

• Depending on h, not all 𝑋𝑖 equally relevant for this estimate

• We might want to focus more on certain 𝑋𝑖 and with this derive an 
alternative Monte Carlo based estimator with reduced variance

• Idea: 

• Since  ℎ 𝑥 𝑓 𝑥 𝑑𝑥 =  ℎ 𝑥
𝑓(𝑥)

𝑔(𝑥)
𝑔 𝑥 𝑑𝑥, sample according to another 

density 𝑔 which focuses on the important part of the sampling region

• Correct estimate by weighting according to 
𝑓(𝑥)

𝑔(𝑥)
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• A Monte Carlo estimator of  ℎ 𝑥 𝑓 𝑥 𝑑𝑥 =  ℎ 𝑥
𝑓(𝑥)

𝑔(𝑥)
𝑔 𝑥 𝑑𝑥 is

Ƹ𝜇𝑀𝐶 =
1

𝑛


𝑖=1

𝑛

ℎ(𝑋𝑖)

• Importance sampling:

• Choose 𝑔 focusing on important regions (aiming for 𝑔 > 𝑓 there, 
elsewhere 𝑔 < 𝑓) 

• Sample according to 𝑔

• Calculate Ƹ𝜇𝐼𝑆
∗ =

1

𝑛
σ𝑖=1

𝑛 ℎ 𝑋𝑖 𝑤∗(𝑋𝑖) with weights 𝑤∗ 𝑋𝑖 =
𝑓 𝑋𝑖

𝑔 𝑋𝑖

• Important that it is possible to evaluate 𝑓 and 𝑔 and easy to sample from 𝑔
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• Ƹ𝜇𝐼𝑆
∗ =

1

𝑛
σ𝑖=1

𝑛 ℎ 𝑋𝑖 𝑤∗(𝑋𝑖) with weights 𝑤∗ 𝑋𝑖 =
𝑓 𝑋𝑖

𝑔 𝑋𝑖

( Ƹ𝜇𝐼𝑆
∗  is the sample mean of 𝑡 𝑋𝑖 = ℎ 𝑋𝑖 𝑤∗ 𝑋𝑖 , 𝑖 = 1, … , 𝑛)

• Ƹ𝜇𝐼𝑆
∗ is an unbiased estimator of 𝜇 =  ℎ 𝑥 𝑓 𝑥 𝑑𝑥

• The variance of Ƹ𝜇𝐼𝑆
∗ is 

𝜎𝐼𝑆∗
2

𝑛
with 𝜎𝐼𝑆∗

2 =  ℎ 𝑥 𝑤∗ 𝑥 − 𝜇 2𝑔 𝑥  𝑑𝑥 

(see Givens and Hoeting or Owen, Theorem 9.1)

➔ an estimator for variance of Ƹ𝜇𝐼𝑆
∗ is 

1

𝑛
times sample variance of 

𝑡 𝑋𝑖 = ℎ 𝑋𝑖 𝑤∗ 𝑋𝑖 , 𝑖 = 1, … , 𝑛
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• Network analysis: failure probabilities can be extremely small ➔
Importance sampling can be useful (Givens and Hoeting, example 6.9):

• A network consists of nodes and edges (visualized by circles and lines)

• Each edge is intact with high probability but has a failure probability pi

which typically is small

• Whole network intact if endnode B reachable from startnode A via intact 
edges, broken otherwise
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• Run 𝑛 times:

• Simulate each edge (if intact or broken)

• Compute whether network intact or broken 

• Problem: Only a few networks will be broken

• To decrease variance of estimator, simulate with failure-probabilities 
𝑝𝑖

∗ > 𝑝𝑖 and use Ƹ𝜇𝐼𝑆
∗
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• Example:

• Assume that 𝑝𝑖 = 0.05 for all edges

• A function net computes if the network is intact (net(x)=1) or broken 
(net(x)=0) for vector of edge-states x=(x1,…,x11) 

• To decrease variance of estimator, simulate with failure-probabilities 
𝑝𝑖

∗ > 𝑝𝑖 and use Ƹ𝜇𝐼𝑆
∗

• We use here 𝑝𝑖
∗ = 0.3



sim        <- 100000

totaledges <- 11

p          <- 0.05

ps <- 0.3

simmat <- matrix(rbinom(sim*totaledges, size=1, prob=1-ps), ncol=totaledges)

broken     <- 1-apply(simmat, 1, net)

nbrokenedg <- totaledges - rowSums(simmat)

w <- dbinom(nbrokenedg, size=totaledges, prob=p) /

dbinom(nbrokenedg, size=totaledges, prob=ps)

#The following formula gives same importance weights ((6.48) in GH, 2013):

#w2 <- ((1-p)/(1-ps))^totaledges * (p*(1-ps)/(ps*(1-p)))^nbrokenedg

bhatIS <- mean(broken*w)

• We get here an estimate ො𝜇𝐼𝑆
∗ = 0.000781

• sd is 0.0000165 obtained by sqrt(var(broken*w)/sim) 

• sd is lower by factor 5.9 compared to standard Monte Carlo estimate based on same 
number of simulations
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• Given a Monte Carlo estimator ො𝜇𝑀𝐶1 =
1

𝑛
σ𝑖=1

𝑛 ℎ(𝑋𝑖), there might be 

another ො𝜇𝑀𝐶2 which has same distribution and is negatively correlated (let 
ρ = Corr( ො𝜇𝑀𝐶1, ො𝜇𝑀𝐶2))

• Then, ො𝜇𝐴𝑆 = ( ො𝜇𝑀𝐶1 + ො𝜇𝑀𝐶2)/2 is an estimator for same target variable and 

has lower variance (factor 
1+𝜌

2
lower)

• Example: Let 𝑋 be a symmetric random var. with mean 0.
Interest in calculating 𝑝 = 𝑃(𝑋 > 1) by Monte Carlo simulations. 

• Use ො𝜇𝑀𝐶1 =
1

𝑛
σ𝑖=1

𝑛 ℎ(𝑋𝑖) with ℎ 𝑋𝑖 = 𝟏 𝑋𝑖 > 1  

• The same distribution has ො𝜇𝑀𝐶2 =
1

𝑛
σ𝑖=1

𝑛 ෨ℎ(𝑋𝑖) with ෨ℎ 𝑋𝑖 = 𝟏{𝑋𝑖 < −1}

(due to symmetry) and they are negatively correlated, 𝜌 = −𝑝/(1 − 𝑝)
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• Example: Let 𝑋 be a symmetric random var. with complicated density 𝑓
and calculate 𝑝 = 𝑃(𝑋 > 1) by Monte Carlo simulation 

• Use Ƹ𝜇𝑀𝐶1 =
1

𝑛
σ𝑖=1

𝑛 ℎ(𝑋𝑖) with 

ℎ 𝑋𝑖 = 𝟏 𝑋𝑖 > 1  

• Ƹ𝜇𝑀𝐶2 =
1

𝑛
σ𝑖=1

𝑛 ෨ℎ(𝑋𝑖) with

෨ℎ 𝑋𝑖 = 𝟏{𝑋𝑖 < −1} has the 
same distribution 

• We compute 2𝑝 = 𝑃(|𝑋| > 1) 
and will use importance 
sampling for it
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• For importance sampling, we want to oversample important regions and 
undersample otherwise

• We use here a normal distribution with standarddeviation 2 as sampling 
distribution 𝑔

• The weight is then 𝑤 = 𝑓/𝑔
f <- function(t){

ct <- (2+cos(t*(64/pi)))

exp(-t^2)*ct/3.544909

}

sim <- 1000000

y <- rnorm(sim,sd=2)

w <- f(y)/dnorm(y,sd=2)

z <- (abs(y)>1)*w

mean(z)/2

[1] 0.07368936
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z <- (abs(y)>1)*w

p <- mean(z)/2

p

[1] 0.07368936

• What is the uncertainty in this estimate?

• sd for the IS estimate of 𝑝:
sdIS <- sqrt(var((y>1)*w)/sim)

sdIS

[1] 0.000210754

• sd for the AS estimate of 𝑝:
rho <- -p/(1-p)

sd  <- sdIS*(1+rho)/2

sd

[1] 9.699411e-05

• 95% CI for 𝑝: (0.07350, 0.07388)

2025-05-16Advanced computational statistics L7 31



• Going back to example with two 
significance tests

• We fix now 𝑐 = 2.21

• We are interested to compute 
𝑃(𝑍1 > 𝑐 or 𝑍2 > 𝑐)
with high precision using 
importance sampling

• Which importance functions 𝑔
would be good?

2025-05-16Advanced computational statistics L7 32



2025-05-16Advanced computational statistics L7 33

• For illustration we use

𝑁
𝛿
𝛿

,
1 0.5

0.5 1
with

𝛿 = 1 for 𝑔 (might be better 
choices, too)

• Draws in lower-left corner:

• less often sampled

• overweighted if sampled

• have lower precision (but 
ℎ = 0 there, so low precision 
is no problem)
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n 1000 100 000

0.0050 0.00049

0.0020 0.00020

Ƹ𝜇𝑀𝐶

Ƹ𝜇𝐼𝑆
∗

• Standard deviation

• 𝑛 = 100 000, Ƹ𝜇𝐼𝑆
∗ = 0.02489

• Draws with weights above 4, 
in [1,4], in [0.25,1), and below 
0.25, respectively are in 
different colors in picture



• Importance sampling estimator with unstandardized weights of 

 ℎ 𝑥 𝑓 𝑥 𝑑𝑥 =  ℎ 𝑥
𝑓(𝑥)

𝑔(𝑥)
𝑔 𝑥 𝑑𝑥 is

ො𝜇𝐼𝑆
∗ =

1

𝑛
σ𝑖=1

𝑛 ℎ 𝑋𝑖 𝑤∗(𝑋𝑖) with weights 𝑤∗ 𝑋𝑖 =
𝑓 𝑋𝑖

𝑔 𝑋𝑖
 

• Importance sampling estimator with standardized weights is

ො𝜇𝐼𝑆 = σ𝑖=1
𝑛 ℎ 𝑋𝑖 𝑤(𝑋𝑖) with 𝑤∗ 𝑋𝑖 =

𝑓 𝑋𝑖

𝑔 𝑋𝑖
, 𝑤 𝑋𝑖 =

𝑤∗ 𝑋𝑖

σ𝑗=1
𝑛 𝑤∗ 𝑋𝑗

• ො𝜇𝐼𝑆 can be used if 𝑓 known up to proportionality constant

• ො𝜇𝐼𝑆 has a slight bias and variance more complicated
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• Importance sampling estimator with standardized weights is

Ƹ𝜇𝐼𝑆 = σ𝑖=1
𝑛 ℎ 𝑋𝑖 𝑤(𝑋𝑖) with 𝑤∗ 𝑋𝑖 =

𝑓 𝑋𝑖

𝑔 𝑋𝑖
, 𝑤 𝑋𝑖 =

𝑤∗ 𝑋𝑖

σ𝑗=1
𝑛 𝑤∗ 𝑋𝑗

• Ƹ𝜇𝐼𝑆 has a slight bias, 

E Ƹ𝜇𝐼𝑆 − 𝜇 =
1

𝑛
𝜇Var 𝑤∗ 𝑋 − Cov 𝑡 𝑋 , 𝑤∗ 𝑋 + 𝑂

1

𝑛2
.

• Its variance is

Var Ƹ𝜇𝐼𝑆 =
1

𝑛
Var 𝑡 𝑋 + 𝜇2Var 𝑤∗ 𝑋 − 2𝜇Cov 𝑡 𝑋 , 𝑤∗ 𝑋 + 𝑂(1/𝑛2).

• To estimate these quantities, one can use the sample statistics for 𝑤∗ 𝑋 and 
𝑡 𝑋 = ℎ 𝑋 𝑤∗ 𝑋 and replace 𝜇 by its estimate
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